arctanx的导数是什么?arctanx/4的导数是什么_正切_函数_导数
arctanx的导数是什么
令y=arctanx,x=tany,dx/dy=sec²y=tan²y+1;
dy/dx=1/(dx/dy)=1/(tan²y+1)=1/(1+x²),具体证明过程如下:
扩展资料
tanx是正切函数,其定义域是{x|x≠(π/2)+kπ,k∈Z},值域是R。
arctanx是反正切函数,其定义域是R,反正切函数的值域为(-π/2,π/2),区别如下:
1、两者的周期性不同
(1)tanx为周期函数,最小正周期为π。
(2)arctanx不是周期函数。
2、两者的单调区间不同
(1)tanx有单调区间(-π/2+kπ,+π/2+kπ),k为整数,且在该区间为单调增函数。
(2)arctanx为单调增函数,单调区间为(-∞,﹢∞)。
arctanx/4的导数是什么
解:令y=arctanx,则x=tany。
对x=tany这个方程“=”的两边同时对x求导,则
(x)’=(tany)’
1=sec²y*(y)’,则
(y)’=1/sec²y
又tany=x,则sec²y=1+tan²y=1+x²
得,(y)’=1/(1+x²)
即arctanx的导数为1/(1+x²)。
Arctangent指反正切函数,反正切函数是反三角函数的一种,即正切函数的反函数。反正切函数是反三角函数中的反正切,意为:tan(a)=b,等价于Arctan(b)=a。
arctanx的导数
arctan(即Arctangent)指反正切函数。反函数与原函数关于y=x的对称点的导数互为倒数。设原函数为y=f(x),则其反函数在y点的导数与f’(x)互为倒数(即原函数,前提要f’(x)存在且不为0)。
arctanx求导方法:
令y=arctanx,则x=tany。
对x=tany这个方程“=”的两边同时对x求导,则
(x)’=(tany)’
1=sec2y*(y)’,则
(y)’=1/sec2y
又tany=x,则sec2y=1+tan2y=1+x2
得,(y)’=1/(1+x2)
即arctanx的导数为1/(1+x2)。
特别声明
本文仅代表作者观点,不代表本站立场,本站仅提供信息存储服务。