初二数学下册课本内容(初二下册数学课本北师大版第49页习题2.2第1题_把下列各式分解因式.)_平方根_同类项_角形

本文目录

  • 初二下册数学课本北师大版第49页习题2.2第1题,把下列各式分解因式.
  • 在人教版教材中,平方根和算术平方根是在什么时候学的学的内容主要有哪些
  • 八年级数学课本知识点

初二下册数学课本北师大版第49页习题2.2第1题,把下列各式分解因式.

1.2X^2-4X =2X(X-2)
2.8m^2n+2mn =2mn(4m+1)
3.a^2x^2y-axy^2 =axy(ax-y)
4.3X^3-3X^2-9X =3X(X^2-X-3)
5.-24x^2y-12xy^2+28y^3 =4y(7y^2-3xy-6x^2)
6.-4a^3b^3“+6a^2b-2ab=-2ab( 2a^2b^2-3a+1)
7.-2x^2-12xy^2+8xy^3=2x(4y^3-6y^2-x)
8.-3ma^3+6ma^2-12ma =-3ma(a^2-2a+4)
9.15ax-20ay =5a(3x-4y)
10.-16x^4-32x^3+56x^2=-8x^2(2x^2+4x-7)

在人教版教材中,平方根和算术平方根是在什么时候学的学的内容主要有哪些

人教版数学七年级下册

人教版数学七年级下:

相交线与平行线、实数、平面直角坐标系、二元一次方程、不等式与不等式组。

你问到的部分应该是属于实数部分,平方根,立方根和实数。

一个正数的平方根有两个,例如25的平方根是±5其中我们把正数的叫做算数平方根。

平方根的定义:若x²=a,则x为a 的平方根

若2²=4,2是4的平方根,(-2)²=4,-2是4的平方根

算术平方根的定义:一个非负数的正的平方根叫做它的算术平方根 

如:2和-2都是4的平方根,而2是4的算术平方根.

扩展资料:

如果一个数的平方等于a,那么这个数叫做a的平方根。a可以是具体的数,也可以是含有字母的代数式。

即:若x²=a,则±√a叫做a的平方根,记作x=±√a。其中a叫被开方数。其中正的平方根被称为算术平方根。

关于二次根式概念,应注意:

被开方数可以是数 ,也可以是代数式。被开方数为正或0的,其平方根为实数;被开方数为负的,其平方根为虚数。


八年级数学课本知识点

只有学习精彩,生命才精彩,只有学习成功,事业才成功。每一门科目都有自己的 学习 方法 ,但其实都是万变不离其中的,数学作为最烧脑的科目之一,也是要记、要背、要讲练的。下面是我给大家整理的一些 八年级 数学的知识点,希望对大家有所帮助。

八年级上册数学知识点 总结 归纳

一、全等形

1、定义:能够完全重合的两个图形叫做全等图形,简称全等形。

2、一个图形经过翻折、平移和旋转等变换后所得到的图形一定与原图形全等。反之,两个全等的图形经过上述变换后一定能够互相重合。

二、全等多边形

1、定义:能够完全重合的多边形叫做全等多边形。互相重合的点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

2、性质:

(1)全等多边形的对应边相等,对应角相等。

(2)全等多边形的面积相等。

三、全等三角形

1、全等符号:≌。如图,不是为:△ABC≌△ABC。读作:三角形ABC全等于三角形ABC。

2、全等三角形的判定定理:

(1)有两边和它们的夹角对应相等的两三角形全等。(即SAS,边角边);

(2)有两角和它们的夹边对应相等的两三角形全等。(即ASA,角边角)

(3)有两角和其中一角的对边对应相等的两三角形全等。(即AAS,角角边)

(4)有三边对应相等的两三角形全等。(即SSS,边边边)

(5)有斜边和一条直角边对应相等的两直角三角形全等。(即HL,斜边直角边)

3、全等三角形的性质:

(1)全等三角形的对应边相等、对应角相等;

(2)全等三角形的周长相等、面积相等;

(3)全等三角形对应边上的中线、高,对应角的平分线都相等。

4、全等三角形的作用:

(1)用于直接证明线段相等,角相等。

(2)用于证明直线的平行关系、垂直关系等。

(3)用于测量人不能的到达的路程的长短等。

(4)用于间接证明特殊的图形。(如证明等腰三角形、等边三角形、平行四边形、矩形、菱形、正方形和梯形等)。

(5)用于解决有关等积等问题。

初二上数学知识点

同类项的概念:所含字母相同,并且相同字母的指数也相同的项叫做同类项。几个常数项也叫同类项。

判断几个单项式或项,是否是同类项的两个标准:

①所含字母相同。②相同字母的次数也相同。

判断同类项时与系数无关,与字母排列的顺序也无关。

合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。

合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

合并同类项步骤:

⑴.准确的找出同类项。

⑵.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。

⑶.写出合并后的结果。

合并同类项时注意:

(1)如果两个同类项的系数互为相反数,合并同类项后,结果为0。

(2)不要漏掉不能合并的项。

(3)只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。

(4)不是同类项千万不能进行合并。

初二上册数学一次函数知识点总结

一、函数:

一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

二、自变量取值范围

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。

三、函数的三种表示法及其优缺点

(1)关系式(解析)法

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。

(2)列表法

把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图象法

用图象表示函数关系的方法叫做图象法。

四、由函数关系式画其图像的一般步骤

(1)列表:列表给出自变量与函数的一些对应值

(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

五、正比例函数和一次函数

1、正比例函数和一次函数的概念

一般地,若两个变量x,y间的关系可以表示成(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。

特别地,当一次函数中的b=0时(即)(k为常数,k0),称y是x的正比例函数。

2、一次函数的图像:所有一次函数的图像都是一条直线

3、一次函数、正比例函数图像的主要特征:

一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。


八年级数学课本知识点相关 文章 :

★ 八年级上册数学课本的知识点归纳

★ 人教版八年级上册数学课本知识点归纳

★ 人教版八年级数学上册知识点总结

★ 八年级下册数学知识点整理

★ 人教版八年级上册数学课本知识点归纳(2)

★ 八年级数学知识点整理归纳

★ 八年级数学上册知识点总结人教版

★ 八年级下册数学书知识点

★ 新人教版八年级数学上册知识点

★ 初二数学上册知识点总结

特别声明

本文仅代表作者观点,不代表本站立场,本站仅提供信息存储服务。

分享:

扫一扫在手机阅读、分享本文