九年级上册数学书人教版(求:人教版九年级上册数学书中的定理)_正多边形_根式_角形

本文目录

  • 求:人教版九年级上册数学书中的定理
  • 哪有最新人教版九年级初三数学上册教学计划(含教学进度表)
  • 人教版九年级册上数学什么资料好

求:人教版九年级上册数学书中的定理

九年级上册知识点

第一单元 二次根式

1、二次根式

式子 叫做二次根式,二次根式必须满足:含有二次根号“ ”;被开方数a必须是非负数。

2、最简二次根式

若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。

化二次根式为最简二次根式的方法和步骤:

(1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。

(2)如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。

3、同类二次根式

几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。

4、二次根式的性质

 

 

5、二次根式混合运算

二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号)。

 

第二单元 一元二次方程

 

 

 

 

第三单元 旋转

一、旋转   

    1、定义

把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。

2、性质

(1)对应点到旋转中心的距离相等。

(2)对应点与旋转中心所连线段的夹角等于旋转角。

二、中心对称   

    1、定义

把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

2、性质

(1)关于中心对称的两个图形是全等形。

(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

3、判定

如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

4、中心对称图形

把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。

考点五、坐标系中对称点的特征    (3分)

    1、关于原点对称的点的特征

两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)

2、关于x轴对称的点的特征

两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)

3、关于y轴对称的点的特征

两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)

 

第四单元 圆

一、圆的相关概念   

    1、圆的定义

在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。

2、圆的几何表示

以点O为圆心的圆记作“⊙O”,读作“圆O”

二、弦、弧等与圆有关的定义   

    (1)弦

连接圆上任意两点的线段叫做弦。

(2)直径   

经过圆心的弦叫做直径。 

直径等于半径的2倍。

(3)半圆

圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。

(4)弧、优弧、劣弧

圆上任意两点间的部分叫做圆弧,简称弧。

弧用符号“⌒”表示,以A,B为端点的弧记作“ ”,读作“圆弧AB”或“弧AB”。

大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)

三、垂径定理及其推论   

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。

推论2:圆的两条平行弦所夹的弧相等。

垂径定理及其推论可概括为:

       过圆心

       垂直于弦

直径   平分弦             知二推三

       平分弦所对的优弧

       平分弦所对的劣弧

四、圆的对称性   

1、圆的轴对称性

圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

    2、圆的中心对称性

    圆是以圆心为对称中心的中心对称图形。

五、弧、弦、弦心距、圆心角之间的关系定理   

    1、圆心角

顶点在圆心的角叫做圆心角。

2、弦心距

从圆心到弦的距离叫做弦心距。

3、弧、弦、弦心距、圆心角之间的关系定理

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。

推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

六、圆周角定理及其推论   

    1、圆周角

顶点在圆上,并且两边都和圆相交的角叫做圆周角。

2、圆周角定理

一条弧所对的圆周角等于它所对的圆心角的一半。

推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

七、点和圆的位置关系   

设⊙O的半径是r,点P到圆心O的距离为d,则有:

d《r 点P在⊙O内;

d=r 点P在⊙O上;

d》r 点P在⊙O外。

八、过三点的圆   

    1、过三点的圆

不在同一直线上的三个点确定一个圆。

2、三角形的外接圆

经过三角形的三个顶点的圆叫做三角形的外接圆。

3、三角形的外心

三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。

4、圆内接四边形性质(四点共圆的判定条件)

    圆内接四边形对角互补。

九、反证法   

先假设命题中的结论不成立,然后由此经过推理,引出矛盾,判定所做的假设不正确,从而得到原命题成立,这种证明方法叫做反证法。

十、直线与圆的位置关系   

直线和圆有三种位置关系,具体如下:

(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;

(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,

(3)相离:直线和圆没有公共点时,叫做直线和圆相离。

如果⊙O的半径为r,圆心O到直线l的距离为d,那么:

直线l与⊙O相交 d《r;

直线l与⊙O相切 d=r;

直线l与⊙O相离 d》r;

十一、切线的判定和性质   

    1、切线的判定定理

经过半径的外端并且垂直于这条半径的直线是圆的切线。

2、切线的性质定理

圆的切线垂直于经过切点的半径。

十二、切线长定理   

    1、切线长

在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。

2、切线长定理

从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

十三、三角形的内切圆   

    1、三角形的内切圆

与三角形的各边都相切的圆叫做三角形的内切圆。

2、三角形的内心

三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心。

十四、圆和圆的位置关系   

    1、圆和圆的位置关系

如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。

如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。

如果两个圆有两个公共点,那么就说这两个圆相交。

2、圆心距

两圆圆心的距离叫做两圆的圆心距。

3、圆和圆位置关系的性质与判定

设两圆的半径分别为R和r,圆心距为d,那么

两圆外离 d》R+r

两圆外切 d=R+r

两圆相交 R-r《d《R+r(R≥r)

两圆内切 d=R-r(R》r)

两圆内含 d《R-r(R》r)

4、两圆相切、相交的重要性质

如果两圆相切,那么切点一定在连心线上,它们是轴对称图形,对称轴是两圆的连心线;相交的两个圆的连心线垂直平分两圆的公共弦。

十五、正多边形和圆   

    1、正多边形的定义

各边相等,各角也相等的多边形叫做正多边形。

2、正多边形和圆的关系

只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。

十六、与正多边形有关的概念   

    1、正多边形的中心

正多边形的外接圆的圆心叫做这个正多边形的中心。

2、正多边形的半径

正多边形的外接圆的半径叫做这个正多边形的半径。

3、正多边形的边心距

正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。

4、中心角

正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。

十七、正多边形的对称性   

    1、正多边形的轴对称性

正多边形都是轴对称图形。一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心。

2、正多边形的中心对称性

边数为偶数的正多边形是中心对称图形,它的对称中心是正多边形的中心。

3、正多边形的画法

先用量角器或尺规等分圆,再做正多边形。

十八、弧长和扇形面积 

 

 

    2、弦切角定理

弦切角:圆的切线与经过切点的弦所夹的角,叫做弦切角。

弦切角定理:弦切角等于弦与切线夹的弧所对的圆周角。

即:∠BAC=∠ADC

 

 

 

 

 

 

3、切割线定理

PA为⊙O切线,PBC为⊙O割线,

 

哪有最新人教版九年级初三数学上册教学计划(含教学进度表)

这里有2021年秋季人教版的:

             2021最新人教版九年级初三数学上册教学计划(含教学进度表)

一、指导思想

       以中央关于教育改革的指示精神以及新《义务教育数学课程标准》为指导,使教育面向全体学生,因材施教,通过有效的措施,激发学生兴趣,启发学生思考,引导学生自主探索,鼓励学生合作交流,使学生真正理解和掌握基本的数学知识与技能、数学思想和方法,得到必要的数学思维训练,获得良好的数学教育。

      为更好地完成教学目标,特制订2021-2022学年度第一学期人教版九年级(初三)数学上册教学计划:

二、学生情况分析

       在我所任教的九年级1班、2班,共有学生84人,其中,男生43人,女生41人。本学期开始,进入初中学习的最后阶段(第五、六学期)。经过前面两年的学习,班上涌现了一批学习刻苦、成绩优异的优秀学生,但也有部分后进学生因多种原因,数学成绩低下,甚至出现厌学情绪和放弃的念头,而中部学生在分析问题能力、灵活性解决问题等方面则有所欠缺。

       针对以上情况,本学期我将采用“分层式”教学,让不同的学生达到不同的目标要求。这学期的重点是,抓好孩子们的学习习惯及数学思维的培养。同时,努力提高课堂教学实效,及时监督学生作业的完成质量及情况,培养孩子们对数学学习的兴趣,帮助他们树立学好数学的信心,争取让每个学生都能获得比较明显的进步。

三、教材分析

       (一)教材结构

       2021秋季人教版九年级(初三)数学上册教材,共有五章,依次为:《一元二次方程》《二次函数》《旋转》《圆》《概率初步》,为迎接中考,本学期还要学完下学期的两章:《反比例函数》和《相似》。

       每章的开始,配有反映本章主要内容的章前图和引言,既可供学生预习用,也可做教师导入用。正文设置了“思考”“探究”“归纳”等栏目。栏目中,以问题,留白或填空等形式为学生提供思维发展,合作交流的空间。同时,也安排了“阅读和与思考”“观察与猜想”“实验与探究”“信息技术应用”等选用内容,还安排几个有一定综合性、实践性、开放性的数学活动,小结、回顾与思考。学习过程中还有练习、习题、复习题三类。

       本册教材的结构力求符合教育学、心理学的原理和学生的年龄特征,具有内容丰富、关注学生的经验与体验、体现知识的形成过程、鼓励思考及解决问题的策略多样化、改变学生的学习方式,体现开放性的教学方法等特点。

       (二)主要内容分析

        1.第二十一章《一元二次方程》

       此前,学生已经掌握了用一元一次方程解决实际问题的方法,在解决某些实际问题时还会遇到一种新方程──一元二次方程。本章就来认识这种方程,讨论这种方程的解法,并运用这种方程解决一些实际问题。

       教材首先通过雕像设计、制作方盒、排球比赛等问题引出一元二次方程的概念,给出一元二次方程的一般形式。然后让学生通过数值代入的方法找出某些简单的一元二次方程的解,对一元二次方程的解加以体会,并给出一元二次方程的根的概念,以及配方法、公式法、因式分解法三种解一元二次方程的方法。

       2.第二十二章《二次函数》

       《二次函数》这章共分三节,首先介绍二次函数及其图像,并从图像得出二次函数的有关性质,然后探讨二次函数与一元二次方程的联系,最后通过设置探究栏目展现二次函数的应用。

       3.第二十三章《旋转》

       此前,学生已经认识了平移、轴对称,探索了它们的性质,并运用它们进行图案设计。本册教材中,图形变换又增添了一名新成员——旋转。《旋转》一章就来认识这种变换,探索它的性质。在此基础上,认识中心对称和中心对称图形。

       4.第二十四章《圆》

       圆是一种常见的图形。在《圆》这一章,学生将进一步认识圆,探索它的性质,并用这些知识解决一些实际问题。通过这一章的学习,学生解决图形问题的能力将会进一步提高。

       5.第二十五章《概率初步》

       将一枚硬币抛掷一次,可能出现正面也可能出现反面,出现正面的可能性大还是出现反面的可能性大呢?学了《概率》一章,学生就能更好地认识这个问题了。掌握了概率的初步知识,学生还会解决更多的实际问题。

……

更多详细内容word打印版,请见百度文库:最新2021人教版九年级初三数学上册教学计划含进度表

码字不易,如有帮助请采纳。

人教版九年级册上数学什么资料好

义务教育课程标准实验教科书·数学》九年级上册包括二次根式、一元二次方程、旋转、圆、
概率初步五章内容,学习内容涉及到了《全日制义务教育数学课程标准(实验稿)》(以下简称《课程标准》)的四个领域“数与代数”“空间与图形”“统计与概率”“课题学习”。
有关上面内容的教辅书很多的。建议根据上面内容精选1——2本。不要过多选择,否则加重学习负担。

特别声明

本文仅代表作者观点,不代表本站立场,本站仅提供信息存储服务。

分享:

扫一扫在手机阅读、分享本文