本文目录
- 高中所有数学公式整理
- 数学公式高中有哪些
- 高中的数学公式大全
- 高中数学公式
- 高中数学公式大全
- 高中生的数学公式
- 高中数学公式有哪些
- 有人知道数学的从小学到高中的主要公式列表最好是按顺序来写
- 高中数学基本公式大全
高中所有数学公式整理
高中所有数学公式整理
圆的公式
1、圆体积=4/3Π(r^3)
2、面积=Π(r^2)
3、周长=2Πr
4、圆的标准方程(x-a)2+(y-b)2=r2【(a,b)是圆心坐标】
5、圆的一般方程x2+y2+dx+ey+f=0【d2+e2-4f》0】
二.椭圆公式
1、椭圆周长公式:l=2πb+4(a-b)
2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差.
3、椭圆面积公式:s=πab
4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率t,但这两个公式都是通过椭圆周率t推导演变而来。
三.两角和公式
1、sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa
2、cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb
3、tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)
4、ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)
四.倍角公式
1、tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga
2、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
五.半角公式
1、sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)
2、cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)
3、tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))
4、ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa))
六.和差化积
1、2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)
2、2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)
3、sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)
4、tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb
5、ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb
七.等差数列
1、等差数列的通项公式为:an=a1+(n-1)d (1)
2、前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0.在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项.,且任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式.
3、从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aqSm-1=(2n-1)an,S2n+1=(2n+1)an+1Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等.和=(首项+末项)*项数÷2项数=(末项-首项)÷公差+1首项=2和÷项数-末项末项=2和÷项数-首项项数=(末项-首项)/公差+1
八.等比数列
1、等比数列的通项公式是:An=A1*q^(n-1)
2、前n项和公式是:Sn=/(1-q)且任意两项am,an的关系为an=am·q^(n-m)
3、从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}4、若m,n,p,q∈N*,则有:ap·aq=am·an,等比中项:aq·ap=2ar ar则为ap,aq等比中项.记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列.
九.抛物线
1、抛物线:y=ax*+bx+c就是y等于ax的平方加上bx再加上c。a》0时,抛物线开口向上;a《0时抛物线开口向下;c=0时抛物线经过原点;b=0时抛物线对称轴为y轴。
2、顶点式y=a(x+h)*+k就是y等于a乘以(x+h)的平方+k,-h是顶点坐标的x,k是顶点坐标的y,一般用于求最大值与最小值。
3、抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)。
4、准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程:y^2=2pxy^2=-2pxx^2=2pyx^2=-2py。
数学公式高中有哪些
数学公式高中介绍如下:
一、数列定律公式:
1、等差数列中:S奇=na中,例如S13=13a7。
2、等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差。
3、等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立。
4、等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q。
二、常用数列公式:bn=n×(2²n)求和Sn=(n-1)×(2²(n+1))+2。
三、抛物线公式:k椭=-{(b²)xo}/{(a²)yo}k双={(b²)xo}/{(a²)yo}k抛=p/yo。注:(xo,yo)均为直线过圆锥曲线所截段的中点。
四、绝对值不等式公式:∣|a|-|b|∣≤∣a±b∣≤∣a∣+∣b∣。
五、向量a在向量b上的射影公式:〔向量a×向量b的数量积〕/[向量b的模]。
高中的数学公式大全
1 元素与集合的关系:,.
2 集合的子集个数共有 个;真子集有个;非空子集有个;非空的真子集有个.
3 二次函数的解析式的三种形式:
(1) 一般式;
(2) 顶点式;(当已知抛物线的顶点坐标时,设为此式)
(3) 零点式;(当已知抛物线与轴的交点坐标为时,设为此式)
(4)切线式:。(当已知抛物线与直线相切且切点的横坐标为时,设为此式)
4 真值表: 同真且真,同假或假
5 常见结论的否定形式;
6 四种命题的相互关系(下图):(原命题与逆否命题同真同假;逆命题与否命题同真同假.)
原命题 互逆 逆命题
若p则q 若q则p
互 互
互 为 为 互
否 否
逆 逆
否 否
否命题 逆否命题
若非p则非q 互逆 若非q则非p
充要条件: (1)、 ,则P是q的充分条件,反之,q是p的必要条件;
(2)、 ,且q ≠》 p,则P是q的充分不必要条件;
(3)、p ≠》 p ,且 ,则P是q的必要不充分条件;
4、p ≠》 p ,且q ≠》 p,则P是q的既不充分又不必要条件。
7 函数单调性:
增函数:(1)、文字描述是:y随x的增大而增大。
(2)、数学符号表述是:设f(x)在x D上有定义,若对任意的 ,都有
成立,则就叫f(x)在x D上是增函数。D则就是f(x)的递增区间。
减函数:(1)、文字描述是:y随x的增大而减小。
(2)、数学符号表述是:设f(x)在x D上有定义,若对任意的 ,都有
成立,则就叫f(x)在x D上是减函数。D则就是f(x)的递减区间。
单调性性质:(1)、增函数+增函数=增函数;(2)、减函数+减函数=减函数;
(3)、增函数-减函数=增函数;(4)、减函数-增函数=减函数;
注:上述结果中的函数的定义域一般情况下是要变的,是等号左边两个函数定义域的交集。
复合函数的单调性:
等价关系:
(1)设那么
上是增函数;
上是减函数.
(2)设函数在某个区间内可导,如果,则为增函数;如果,则为减函数.
8函数的奇偶性:(注:是奇偶函数的前提条件是:定义域必须关于原点对称)
奇函数:
定义:在前提条件下,若有 ,
则f(x)就是奇函数。
性质:(1)、奇函数的图象关于原点对称;
(2)、奇函数在x》0和x《0上具有相同的单调区间;
(3)、定义在R上的奇函数,有f(0)=0 .
偶函数:
定义:在前提条件下,若有 ,则f(x)就是偶函数。
性质:(1)、偶函数的图象关于y轴对称;
(2)、偶函数在x》0和x《0上具有相反的单调区间;
奇偶函数间的关系:
(1)、奇函数·偶函数=奇函数; (2)、奇函数·奇函数=偶函数;
(3)、偶奇函数·偶函数=偶函数; (4)、奇函数±奇函数=奇函数(也有例外得偶函数的)
(5)、偶函数±偶函数=偶函数; (6)、奇函数±偶函数=非奇非偶函数
奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数.
9函数的周期性:
定义:对函数f(x),若存在T 0,使得f(x+T)=f(x),则就叫f(x)是周期函数,其中,T是f(x)的一个周期。
周期函数几种常见的表述形式:
(1)、f(x+T)= - f(x),此时周期为2T ;
(2)、 f(x+m)=f(x+n),此时周期为2 ;
(3)、 ,此时周期为2m 。
10常见函数的图像:
11 对于函数(),恒成立,则函数的对称轴是;两个函数与 的图象关于直线对称.
12 分数指数幂与根式的性质:
(1)(,且).
(2)(,且).
(3).
(4)当为奇数时,;当为偶数时,.
13 指数式与对数式的互化式: .
指数性质:
(1)1、 ; (2)、 ( ) ; (3)、
(4)、 ; (5)、 ;
指数函数:
(1)、 在定义域内是单调递增函数;
(2)、 在定义域内是单调递减函数。注: 指数函数图象都恒过点(0,1)
对数性质:
(1)、 ;(2)、 ;
(3)、 ;(4)、 ; (5)、
(6)、 ; (7)、
对数函数:
(1)、 在定义域内是单调递增函数;
(2)、 在定义域内是单调递减函数;注: 对数函数图象都恒过点(1,0)
(3)、
(4)、 或
14 对数的换底公式 : (,且,,且, ).
对数恒等式:(,且, ).
推论 (,且, ).
15对数的四则运算法则:若a>0,a≠1,M>0,N>0,则
(1); (2) ;
(3); (4) 。
16 平均增长率的问题(负增长时):
如果原来产值的基础数为N,平均增长率为,则对于时间的总产值,有.
17 等差数列:
通项公式: (1) ,其中 为首项,d为公差,n为项数, 为末项。
(2)推广:
(3) (注:该公式对任意数列都适用)
前n项和: (1) ;其中 为首项,n为项数, 为末项。
(2)
(3) (注:该公式对任意数列都适用)
(4) (注:该公式对任意数列都适用)
常用性质:(1)、若m+n=p+q ,则有 ;
注:若 的等差中项,则有2 n、m、p成等差。
(2)、若 、 为等差数列,则 为等差数列。
(3)、 为等差数列, 为其前n项和,则 也成等差数列。
(4)、 ;
(5) 1+2+3+…+n=
等比数列:
通项公式:(1) ,其中 为首项,n为项数,q为公比。
(2)推广:
(3) (注:该公式对任意数列都适用)
前n项和:(1) (注:该公式对任意数列都适用)
(2) (注:该公式对任意数列都适用)
(3)
常用性质:(1)、若m+n=p+q ,则有 ;
注:若 的等比中项,则有 n、m、p成等比。
(2)、若 、 为等比数列,则 为等比数列。
18分期付款(按揭贷款) :每次还款 元(贷款 元, 次还清,每期利率为 ).
19三角不等式:
(1)若 ,则 .
(2) 若 ,则 .
(3) .
20 同角三角函数的基本关系式:,=,
21 正弦、余弦的诱导公式(奇变偶不变,符号看象限)
22 和角与差角公式
;;
.
=
(辅助角所在象限由点的象限决定, ).
23 二倍角公式及降幂公式
.
.
.
24 三角函数的周期公式
函数,x∈R及函数,x∈R(A,ω,为常数,且A≠0)的周期;函数,(A,ω,为常数,且A≠0)的周期.
三角函数的图像:
25 正弦定理 :(R为外接圆的半径).
26余弦定理:
;;.
27面积定理:
(1)(分别表示a、b、c边上的高).
(2).
(3).
28三角形内角和定理 :
在△ABC中,有
.
29实数与向量的积的运算律:设λ、μ为实数,那么:
(1) 结合律:λ(μ)=(λμ) ;
(2)第一分配律:(λ+μ) =λ+μ;
(3)第二分配律:λ(+)=λ+λ.
30与的数量积(或内积):·=||||。
31平面向量的坐标运算:
(1)设=,=,则+=.
(2)设=,=,则-=.
(3)设A,B,则.
(4)设=,则=.
(5)设=,=,则·=.
32 两向量的夹角公式:
(=,=).
33 平面两点间的距离公式:
=(A,B).
34 向量的平行与垂直 :设=,=,且,则:
||=λ .(交叉相乘差为零)
() ·=0.(对应相乘和为零)
35 线段的定比分公式 :设,,是线段的分点,是实数,且,则
().
36三角形的重心坐标公式: △ABC三个顶点的坐标分别为、、,则△ABC的重心的坐标是.
37三角形五“心”向量形式的充要条件:
设为所在平面上一点,角所对边长分别为,则
(1)为的外心.
(2)为的重心.
(3)为的垂心.
(4)为的内心.
(5)为的的旁心.
38常用不等式:
(1)(当且仅当a=b时取“=”号).
(2)(当且仅当a=b时取“=”号).
(3)
(4).
(5)(当且仅当a=b时取“=”号)。
39极值定理:已知都是正数,则有
(1)若积是定值,则当时和有最小值;
(2)若和是定值,则当时积有最大值.
(3)已知,若则有
。
(4)已知,若则有
40 一元二次不等式,如果与同号,则其解集在两根之外;如果与异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.即:
高中数学公式
高中数学公式大全
数学公式一定要背好,下面是我为大家收集的关于高中数学公式大全,欢迎大家阅读!
1 、过两点有且只有一条直线
2、 两点之间线段最短
3 、同角或等角的补角相等
4 、同角或等角的余角相等
5、 过一点有且只有一条直线和已知直线垂直
6、 直线外一点与直线上各点连接的所有线段中,垂线段最短
7、 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8、 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 、同位角相等,两直线平行
10 、内错角相等,两直线平行
11 、同旁内角互补,两直线平行
12、两直线平行,同位角相等
13、 两直线平行,内错角相等
14、 两直线平行,同旁内角互补
15 、定理 三角形两边的和大于第三边
16 、推论 三角形两边的差小于第三边
17 、三角形内角和定理 三角形三个内角的和等于180°
18 、推论1 直角三角形的两个锐角互余
19、 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20、 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 、全等三角形的对应边、对应角相等
22、边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等
23 、角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等
24、 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等
25、 边边边公理(sss) 有三边对应相等的两个三角形全等
26、 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等
27、 定理1 在角的平分线上的点到这个角的两边的距离相等
28、 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29、 角的平分线是到角的两边距离相等的所有点的集合
30 、等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 、推论3 等边三角形的各角都相等,并且每一个角都等于60°
34、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 、推论1 三个角都相等的三角形是等边三角形
36、 推论 2 有一个角等于60°的等腰三角形是等边三角形
37、 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 、直角三角形斜边上的中线等于斜边上的一半
39 、定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 、逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42、 定理1 关于某条直线对称的两个图形是全等形
43、 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46、勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47、勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48、定理 四边形的内角和等于360°
49、四边形的外角和等于360°
50、多边形内角和定理 n边形的内角的和等于(n-2)×180°
51、推论 任意多边的外角和等于360°
52、平行四边形性质定理1 平行四边形的对角相等
53、平行四边形性质定理2 平行四边形的对边相等
54、推论 夹在两条平行线间的平行线段相等
55、平行四边形性质定理3 平行四边形的对角线互相平分
56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60、矩形性质定理1 矩形的.四个角都是直角
61、矩形性质定理2 矩形的对角线相等
62、矩形判定定理1 有三个角是直角的四边形是矩形
63、矩形判定定理2 对角线相等的平行四边形是矩形
64、菱形性质定理1 菱形的四条边都相等
65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66、菱形面积=对角线乘积的一半,即s=(a×b)÷2
67、菱形判定定理1 四边都相等的四边形是菱形
68、菱形判定定理2 对角线互相垂直的平行四边形是菱形
69、正方形性质定理1 正方形的四个角都是直角,四条边都相等
70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71、定理1 关于中心对称的两个图形是全等的
72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
74、等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75、等腰梯形的两条对角线相等
76、等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
77、对角线相等的梯形是等腰梯形
78、平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
79、 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80、 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边
81 、三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半
82 、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 l=(a+b)÷2 s=l×h
83、 (1)比例的基本性质 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d
84 、(2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b
86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例
87 、推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88 、定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89 、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90、 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91 、相似三角形判定定理1 两角对应相等,两三角形相似(asa)
92 、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93、 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)
94 、判定定理3 三边对应成比例,两三角形相似(sss)
95 、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96、 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
97、 性质定理2 相似三角形周长的比等于相似比
98、 性质定理3 相似三角形面积的比等于相似比的平方
99 、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
101、圆是定点的距离等于定长的点的集合
102、圆的内部可以看作是圆心的距离小于半径的点的集合
103、圆的外部可以看作是圆心的距离大于半径的点的集合
104、同圆或等圆的半径相等
105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
107、到已知角的两边距离相等的点的轨迹,是这个角的平分线
108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
109、定理 不在同一直线上的三点确定一个圆。
110、垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111、推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112、推论2 圆的两条平行弦所夹的弧相等
113、圆是以圆心为对称中心的中心对称图形
114、定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
115、推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116、定理 一条弧所对的圆周角等于它所对的圆心角的一半
117、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径
119、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120、定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
121、①直线l和⊙o相交 d
②直线l和⊙o相切 d=r
③直线l和⊙o相离 d》r
122、切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
123、切线的性质定理 圆的切线垂直于经过切点的半径
124、推论1 经过圆心且垂直于切线的直线必经过切点
125、推论2 经过切点且垂直于切线的直线必经过圆心
126、切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
127、圆的外切四边形的两组对边的和相等
128、弦切角定理 弦切角等于它所夹的弧对的圆周角
129、推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130、相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等
131、推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的
两条线段的比例中项
132、切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项
133、推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134、如果两个圆相切,那么切点一定在连心线上
135、①两圆外离 d》r+r ②两圆外切 d=r+r
③两圆相交 r-rr)
④两圆内切 d=r-r(r》r) ⑤两圆内含dr)
136、定理 相交两圆的连心线垂直平分两圆的公共弦
137、定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138、定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139、正n边形的每个内角都等于(n-2)×180°/n
140、定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141、正n边形的面积sn=pnrn/2 p表示正n边形的周长
142、正三角形面积√3a/4 a表示边长
143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144、弧长计算公式:l=nπr/180
145、扇形面积公式:s扇形=nπr2/360=lr/2
146、内公切线长= d-(r-r) 外公切线长= d-(r+r)
147、等腰三角形的两个底脚相等
148、等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合
149、如果一个三角形的两个角相等,那么这两个角所对的边也相等
150、三条边都相等的三角形叫做等边三角
;高中数学公式大全
1、抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py 直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c*h 正棱锥侧面积 S=1/2c*h 正棱台侧面积 S=1/2(c+c)h 圆台侧面积 S=1/2(c+c)l=pi(R+r)l 球的表面积 S=4pi*r2 圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l 弧长公式 l=a*r a是圆心角的弧度数r 》0 扇形面积公式 s=1/2*l*r 锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 斜棱柱体积 V=SL 注:其中,S是直截面面积, L是侧棱长 柱体体积公式 V=s*h 圆柱体 V=pi*r2h。
2、正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径 余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角 乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b。
3、和差化积: 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB cotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB。
4、两角和公式: sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)。
高中生的数学公式
高中生的数学公式大全
公式在数学中占很重要的位置,下面我为大家精心整理的高中生的数学公式大全,欢迎大家阅读与学习!
乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b《=》-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理
判别式
b2-4ac=0 注:方程有两个相等的’实根
b2-4ac》0 注:方程有两个不等的实根
b2-4ac《0 注:方程没有实根,有共轭复数根
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F》0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c’*h
正棱锥侧面积 S=1/2c*h’ 正棱台侧面积 S=1/2(c+c’)h’
圆台侧面积 S=1/2(c+c’)l=pi(R+r)l 球的表面积 S=4pi*r2
圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l
弧长公式 l=a*r a是圆心角的弧度数r 》0 扇形面积公式 s=1/2*l*r
锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
斜棱柱体积 V=S’L 注:其中,S’是直截面面积, L是侧棱长
高中数学公式有哪些
高中数学公式如下:
1、cos(A-B) = cosAcosB+sinAsinB。
2、cot(A-B) = (cotAcotB+1)/(cotB-cotA)。
3、tan3a = tan a • tan(π/3+a)• tan(π/3-a)。
4、sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)。
5、cos(a)+cos(b) = 2cos。
有人知道数学的从小学到高中的主要公式列表最好是按顺序来写
1、 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数= 1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6、 加数+加数=和 和-一个加数=另一个加数
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数×因数=积 积÷一个因数=另一个因数
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1、正方形:C周长 S面积 a边长 周长=边长×4C=4a 面积=边长×边长S=a×a
2、正方体:V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6
体 积=棱长×棱长×棱长 V=a×a×a
3、长方形:
C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab
4、长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
(2)体积=长×宽×高 V=abh
5、三角形
s面积 a底 h高 面积=底×高÷2 s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6、平行四边形:s面积 a底 h高 面积=底×高 s=ah
7、梯形:s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)×h÷2
8 圆形:S面 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径 C=∏d=2∏r
(2)面积=半径×半径×∏
9、圆柱体:v体积 h:高 s:底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10、圆锥体:v体积 h高 s底面积 r底面半径 体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1、非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2、封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
长度单位换算
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米
面积单位换算
1平方千米=100公顷
1公顷=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
体(容)积单位换算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量单位换算
1吨=1000 千克
1千克=1000克
1千克=1公斤
人民币单位换算
1元=10角
1角=10分
1元=100分
时间单位换算
1世纪=100年 1年=12月
大月(31天)有: 1\3\5\7\8\10\12月
小月(30天)的有: 4\6\9\11月
平年 2月28天, 闰年 2月29天
平年全年365天, 闰年全年366天
1日=24小时 1小时=60分
1分=60秒 1小时=3600秒
小学数学几何形体周长 面积 体积计算公式
1、长方形的周长=(长+宽)×2 C=(a+b)×2
2、正方形的周长=边长×4 C=4a
3、长方形的面积=长×宽 S=ab
4、正方形的面积=边长×边长 S=a.a= a
5、三角形的面积=底×高÷2 S=ah÷2
6、平行四边形的面积=底×高 S=ah
7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
10、圆的面积=圆周率×半径×半径
常见的初中数学公式
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12 两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理(ASA) 有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形
全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角
所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的
一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直
平分线
44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,
那么交点在对称轴上
45 逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两
个图形关于这条直线对称
46 勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,
即a^2+b^2=c^2
47 勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,
那么这个三角形是直角三角形
48 定理 四边形的内角和等于360°
49 四边形的外角和等于360°
50 多边形内角和定理 n边形的内角的和等于(n-2)×180°
51 推论 任意多边的外角和等于360°
52 平行四边形性质定理 1 平行四边形的对角相等
53 平行四边形性质定理 2 平行四边形的对边相等
54 推论 夹在两条平行线间的平行线段相等
55 平行四边形性质定理 3 平行四边形的对角线互相平分
56 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形
57 平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形
58 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形
59 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形
60 矩形性质定理 1 矩形的四个角都是直角
61 矩形性质定理 2 矩形的对角线相等
62 矩形判定定理 1 有三个角是直角的四边形是矩形
63 矩形判定定理 2 对角线相等的平行四边形是矩形
64 菱形性质定理 1 菱形的四条边都相等
65 菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66 菱形面积=对角线乘积的一半,即 S=(a×b)÷2
67 菱形判定定理 1 四边都相等的四边形是菱形
68 菱形判定定理 2 对角线互相垂直的平行四边形是菱形
69 正方形性质定理 1 正方形的四个角都是直角,四条边都相等
70 正方形性质定理 2 正方形的两条对角线相等,并且互相垂直平分,每
条对角线平分一组对角
71 定理1 关于中心对称的两个图形是全等的
72 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被
对称中心平分
73 逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,
那么这两个图形关于这一点对称
74 等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75 等腰梯形的两条对角线相等
76 等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
77 对角线相等的梯形是等腰梯形
78 平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,
那么在其他直线上截得的线段也相等
79 推论 1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80 推论 2 经过三角形一边的中点与另一边平行的直线,必平分第三边
81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半
82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半
L=(a+b)÷2 S=L×h
83 (1)比例的基本性质 如果 a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d
84 (2)合比性质 如果 a/b=c/d,那么(a±b)/b=(c±d)/d
85 (3)等比性质 如果 a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)
/(b+d+…+n)=a/b
86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成
比例
87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得
的应线段成比例
88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线
段成比例,那么这条直线平行于三角形的第三边
89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的
三边与原三角形三边对应成比例
90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,
所构成的三角形与原三角形相似
91 相似三角形判定定理 1 两角对应相等,两三角形相似(ASA)
92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93 判定定理 2 两边对应成比例且夹角相等,两三角形相似(SAS)
94 判定定理 3 三边对应成比例,两三角形相似(SSS)
95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的
斜边和一条直角边对应成比例,那么这两个直角三角形相似
96 性质定理 1 相似三角形对应高的比,对应中线的比与对应角平分线的
比都等于相似比
97 性质定理 2 相似三角形周长的比等于相似比
98 性质定理 3 相似三角形面积的比等于相似比的平方
99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的
余角的正弦值
100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的
余角的正切值
101 圆是定点的距离等于定长的点的集合
102 圆的内部可以看作是圆心的距离小于半径的点的集合
103 圆的外部可以看作是圆心的距离大于半径的点的集合
104 同圆或等圆的半径相等
105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
107 到已知角的两边距离相等的点的轨迹,是这个角的平分线
108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等
的一条直线
109 定理 不在同一直线上的三点确定一个圆.
110 垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111 推论 1
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112 推论2 圆的两条平行弦所夹的弧相等
113 圆是以圆心为对称中心的中心对称图形
114 定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,
所对的弦的弦心距相等
115 推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦
心距中有一组量相等那么它们所对应的其余各组量都相等
116 定理 一条弧所对的圆周角等于它所对的圆心角的一半
117 推论 1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角
所对的弧也相等
118 推论 2 半圆(或直径)所对的圆周角是直角;90° 的圆周角所对的弦
是直径
119 推论 3 如果三角形一边上的中线等于这边的一半,那么这个三角形是
直角三角形
120 定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对
角
121 ①直线L和⊙O相交 d<r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
122 切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切
线
123 切线的性质定理 圆的切线垂直于经过切点的半径
124 推论 1 经过圆心且垂直于切线的直线必经过切点
125 推论 2 经过切点且垂直于切线的直线必经过圆心
126 切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和
这一点的连线平分两条切线的夹角
127 圆的外切四边形的两组对边的和相等
128 弦切角定理 弦切角等于它所夹的弧对的圆周角
129 推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130 相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等
131 推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线
段的比例中项
132 切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆
交点的两条线段长的比例中项
133 推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两
条线段长的积相等
134 如果两个圆相切,那么切点一定在连心线上
135 ①两圆外离 d>R+r ②两圆外切 d=R+r ③两圆相交 R-r<d<R+r(R>r)
④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)
136 定理 相交两圆的连心线垂直平分两圆的公共弦
137 定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆
的外切正n边形
138 定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139 正n边形的每个内角都等于(n-2)×180°/n
140 定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141 正n边形的面积Sn=pnrn/2 p表示正n边形的周长
142 正三角形面积 √3a/4 a表示边长
143 如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因
此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144 弧长计算公式:L=n兀R/180
145 扇形面积公式:S扇形=n兀R^2/360=LR/2
146 内公切线长=d-(R-r) 外公切线长= d-(R+r)
实用工具:常用数学公式
公式分类 公式表达式
乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理
判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac》0 注:方程有两个不等的实根
b2-4ac0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c’*h 正棱锥侧面积 S=1/2c*h’
正棱台侧面积 S=1/2(c+c’)h’ 圆台侧面积 S=1/2(c+c’)l=pi(R+r)l
球的表面积 S=4pi*r2 圆柱侧面积 S=c*h=2pi*h
圆锥侧面积 S=1/2*c*l=pi*r*l
弧长公式 l=a*r a是圆心角的弧度数r》0 扇形公式 s=1/2*l*r
锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
斜棱柱体积 V=S’L 注:其中,S’是直截面面积, L是侧棱长
柱体体积公式 V=s*h 圆柱体 V=pi*r2h
高中数学基本公式大全
寒窗苦读十余载,今朝考试展锋芒;思维冷静不慌乱,下笔如神才华展;心平气和信心足,过关斩将如流水;细心用心加耐心,努力备考,定会考入理想院校。接下来是我为大家整理的高中数学基本公式大全,希望大家喜欢!
高中数学基本公式大全一
复合函数如何求导f=f(u),
从而(公式):f’=f’(u)_’(x)
呵呵,我们的老师写在黑板上时我一开始也看不懂,那就举个例子吧,耐心看哦!
f=sin(2x),则设g(x)=2x,令g(x)=2x=u,则f(u)=sin(u)
所以f’=2cos(2x).
以此类推y’=’=-3sin(x)
y’={sin(3-x)]’=-cos(x)
一开始会做不好,老是要对照公式和例子,
但只要多练练,并且熟记公式,最重要的是记住一两个例子,多练习就会了。
复合函数求导法则证法一:先证明个引理
f(x)在点x0可导的充要条件是在x0的某邻域U(x0)内,存在一个在点x0连续的函数H(x),使f(x)-f(x0)=H(x)(x-x0)从而f’(x0)=H(x0)
证明:设f(x)在x0可导,令 H(x)=/(x-x0),x∈U’(x0)(x0去心邻域);H(x)=f’(x0),x=x0
因lim(x-》x0)H(x)=lim(x-》x0)/(x-x0)=f’(x0)=H(x0)
所以H(x)在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0)
反之,设存在H(x),x∈U(x0),它在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0)
因存在极限lim(x-》x0)H(x)=lim(x-》x0)/(x-x0)=lim(x-》x0)f’(x)=H(x0)
所以f(x)在点x0可导,且f’(x0)=H(x0)
引理证毕。
设u=φ(x)在点u0可导,y=f(u)在点u0=φ(x0)可导,则复合函数F(x)=f(φ(x))在x0可导,且F’(x0)=f’(u0)φ’(x0)=f’(φ(x0))φ’(x0)
证明:由f(u)在u0可导,由引理必要性,存在一个在点u0连续的函数H(u),使f’(u0)=H(u0),且f(u)-f(u0)=H(u)(u-u0)
又由u=φ(x)在x0可导,同理存在一个在点x0连续函数G(x),使φ’(x0)=G(x0),且φ(x)-φ(x0)=G(x)(x-x0)
于是就有,f(φ(x))-f(φ(x0))=H(φ(x))(φ(x)-φ(x0))=H(φ(x))G(x)(x-x0)
因为φ,G在x0连续,H在u0=φ(x0)连续,因此H(φ(x))G(x)在x0连续,再由引理的充分性可知F(x)在x0可导,且
F’(x0)=f’(u0)φ’(x0)=f’(φ(x0))φ’(x0)
证法二:y=f(u)在点u可导,u=g(x)在点x可导,则复合函数y=f(g(x))在点x0可导,且dy/dx=(dy/du)_du/dx)
证明:因为y=f(u)在u可导,则lim(Δu-》0)Δy/Δu=f’(u)或Δy/Δu=f’(u)+α(lim(Δu-》0)α=0)
当Δu≠0,用Δu乘等式两边得,Δy=f’(u)Δu+αΔu
但当Δu=0时,Δy=f(u+Δu)-f(u)=0,故上等式还是成立。
又因为Δx≠0,用Δx除以等式两边,且求Δx-》0的极限,得
dy/dx=lim(Δx-》0)Δy/Δx=lim(Δx-》0)/Δx=f’(u)lim(Δx-》0)Δu/Δx+lim(Δx-》0)αΔu/Δx
又g(x)在x处连续(因为它可导),故当Δx-》0时,有Δu=g(x+Δx)-g(x)-》0
则lim(Δx-》0)α=0
最终有dy/dx=(dy/du)_du/dx)
高中数学基本公式大全二
1过两点有且只有一条直线
2两点之间线段最短
3同角或等角的补角相等
4同角或等角的余角相等
5过一点有且只有一条直线和已知直线垂直
6直线外一点与直线上各点连接的所有线段中,垂线段最短
7平行公理经过直线外一点,有且只有一条直线与这条直线平行
8如果两条直线都和第三条直线平行,这两条直线也互相平行
9同位角相等,两直线平行
10内错角相等,两直线平行
11同旁内角互补,两直线平行
12两直线平行,同位角相等
13两直线平行,内错角相等
14两直线平行,同旁内角互补
15定理三角形两边的和大于第三边
16推论三角形两边的差小于第三边
17三角形内角和定理三角形三个内角的和等于180°
18推论1直角三角形的两个锐角互余
19推论2三角形的一个外角等于和它不相邻的两个内角的和
20推论3三角形的一个外角大于任何一个和它不相邻的内角
21全等三角形的对应边、对应角相等
22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等
23角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等
24推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等
25边边边公理(SSS)有三边对应相等的两个三角形全等
26斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等
27定理1在角的平分线上的点到这个角的两边的距离相等
28定理2到一个角的两边的距离相同的点,在这个角的平分线上
29角的平分线是到角的两边距离相等的所有点的集合
30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)
31推论1等腰三角形顶角的平分线平分底边并且垂直于底边
32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33推论3等边三角形的各角都相等,并且每一个角都等于60°
34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35推论1三个角都相等的三角形是等边三角形
36推论2有一个角等于60°的等腰三角形是等边三角形
37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38直角三角形斜边上的中线等于斜边上的一半
39定理线段垂直平分线上的点和这条线段两个端点的距离相等
高中数学基本公式大全三
常用的诱导公式有以下几组:
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα(k∈Z)
cos(2kπ+α)=cosα(k∈Z)
tan(2kπ+α)=tanα(k∈Z)
cot(2kπ+α)=cotα(k∈Z)
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α与-α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
注意:在做题时,将a看成锐角来做会比较好做。
诱导公式记忆口诀
※规律 总结 ※
上面这些诱导公式可以概括为:
对于π/2_±α(k∈Z)的三角函数值,
①当k是偶数时,得到α的同名函数值,即函数名不改变;
②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.
(奇变偶不变)
然后在前面加上把α看成锐角时原函数值的符号。
(符号看象限)
例如:
sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
当α是锐角时,2π-α∈(270°,360°),sin(2π-α)《0,符号为“-”。
所以sin(2π-α)=-sinα
上述的记忆口诀是:
奇变偶不变,符号看象限。
公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α
所在象限的原三角函数值的符号可记忆
水平诱导名不变;符号看象限。
#
各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”.
这十二字口诀的意思就是说:
第一象限内任何一个角的四种三角函数值都是“+”;
第二象限内只有正弦是“+”,其余全部是“-”;
第三象限内切函数是“+”,弦函数是“-”;
第四象限内只有余弦是“+”,其余全部是“-”.
上述记忆口诀,一全正,二正弦,三内切,四余弦
#
还有一种按照函数类型分象限定正负:
函数类型第一象限第二象限第三象限第四象限
正弦...........+............+............—............—........
余弦...........+............—............—............+........
正切...........+............—............+............—........
余切...........+............—............+............—........
同角三角函数基本关系
同角三角函数的基本关系式
倒数关系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
商的关系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方关系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函数关系六角形记忆法
六角形记忆法:(参看图片或参考资料链接)
构造以“上弦、中切、下割;左正、右余、中间1“的正六边形为模型。
(1)倒数关系:对角线上两个函数互为倒数;
(2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。
(主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。
(3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。
高中数学基本公式大全四
1、直线
两点距离、定比分点 直线方程
|AB|=| |
|P1P2|=
y-y1=k(x-x1)
y=kx+b
两直线的位置关系 夹角和距离
或k1=k2,且b1≠b2
l1与l2重合
或k1=k2且b1=b2
l1与l2相交
或k1≠k2
l2⊥l2
或k1k2=-1 l1到l2的角
l1与l2的夹角
点到直线的距离
2.圆锥曲线
圆 椭圆
标准方程(x-a)2+(y-b)2=r2
圆心为(a,b),半径为R
一般方程x2+y2+Dx+Ey+F=0
其中圆心为( ),
半径r
(1)用圆心到直线的距离d和圆的半径r判断或用判别式判断直线与圆的位置关系
(2)两圆的位置关系用圆心距d与半径和与差判断 椭圆
焦点F1(-c,0),F2(c,0)
(b2=a2-c2)
离心率
准线方程
焦半径|MF1|=a+ex0,|MF2|=a-ex0
双曲线 抛物线
双曲线
焦点F1(-c,0),F2(c,0)
(a,b》0,b2=c2-a2)
离心率
准线方程
焦半径|MF1|=ex0+a,|MF2|=ex0-a抛物线y2=2px(p》0)
焦点F
准线方程
坐标轴的平移
这里(h,k)是新坐标系的原点在原坐标系中的坐标。
高中数学基本公式大全相关 文章 :
1. 高一数学必背公式及知识汇总
2. 高中数学公式大汇总
3. 高一数学必修一公式大全
4. 高中数学公式大全
5. 常用数学公式大全
6. 高中数学的阶乘公式大全
7. 高中数学基础知识大全
8. 高中数学必修三公式汇总
9. 高中的全部数学公式
10. 高中数学公式汇总
特别声明
本文仅代表作者观点,不代表本站立场,本站仅提供信息存储服务。