分数与除法的关系教学设计
教学内容: 人教版小学数学五年级下册第四单元第二课时《分数与除法的
关系》。
教学目标:
1.使学生理解两个整数相除的商可以用分数来表示。
2.使学生掌握分数与除法的关系并理解分数与除法的本质联系。
3.培养学生合作探究解决问题的能力。
重点、难点:
1.理解、归纳分数与除法的关系。
2.用除法的意义理解分数的意义。
教学准备:
课件,板贴,圆形卡片,剪刀。
教学过程:
一 、复习旧知,导入新课
师:上课!
师:今天老师带来一个分
你 对 于
展开全文
这个分数,你有哪些认
识?
生:把单位“1”平均分成4份,表示这样的3份。
生:分数单位是
, 3 个
就是
生:这个分数比
师:分数在我们生活中也经常用到。请看,我们学校五年级同学在进行五.
一劳动实践,午餐时间,同学们正在平均分饼呢。 (ppt出示情景图)
师:看,这里有4组同学,每组都是4人,每人桌上都有一盒饼,那么,每
人分的自己桌上饼的几分之几?
生:
师:你是怎么想的?
生:都是把单位“1”平均分成4份,每份是这盒饼的
师:既然这些小组分的都是总数的
,那每人分得的个数会一样多吗?让我
们一起来分分看。
【评析:课始以复习分数的意义激活经验,主动迁移,为新课学习做好迁 移准备。然后借助简单的生活情境,在巩固学生对分数的“份数”定义认识的 同时,结合单位“1”——饼的总数变化,引导学生初步感知总数与份数、每份 数之间的关系,产生计算每个小组每人分得块数的需求,也为后面理清“每人 分得多少块”和“每人分得这些饼的几分之几”,即“量”和“率”这两个容易
混淆的问题进行了适当的铺垫。】
二、 操作探究,形成概念
1、 初步感知
师:我们先打开第一个盒子,这里有8个饼,要平均分给小组4人,每人分
得多少个?
师:请你来说
生:8÷4=2(个),把8个饼平均分成4份,每份就是2个。 (板书:8÷4=2
( 个 ) )
师:再打开第二个盒子,这时总数的
表示多少个呢?
生:4÷4=1(个)所以每人分得1个饼。
(师板书:4÷4=1(个))
师:上面2个问题都是我们二年级学过的知识,为什么列除法算式?
生:因为我们都是把这些饼平均分成四份。
师:是的,我们就是把这些饼进行平均分, (板书:平均分)解决平均分的 问题我们用除法。 (板书:除法)分数也表示平均分(板书:分数)那分数与除 法之间有关系吗?如果有会是怎样的一种关系?这节课我们就来研究分数与除
法的关系。 (板书课题:分数与除法的关系)
师:我们来打开第三个盒子,现在只有1个饼,把1个饼平均分给4人,每
人分得多少个?你会列式吗?
PPT:1个饼平均分给4人,每人分得多少个?
生:1÷4(师板书:1÷4)
师:那每人分得多少个饼呢?你是怎么想的?
生:0.25个
师:他用一个小数表示1÷4的结果,还可以用什么数来表示?--分数
生:
( 个 ) (师板书
师:哎?
个,他用一个分数表示,谁懂她的想法?
生:可以把一个饼平均分成4份,所以每人得到每个的
师:说不如做,你能演示给大家看看吗?用圆代替饼,请你来演示一下。
生上台演示,对折再对折,找到
师:老师把你们组的成果展示到黑板上。把1个饼平均分成4份,每人就分
得4份中的1份,就是这样的一小块,那这一小块是这一整个的 … … ?
生:
。 (师板书
师:那是几个饼呢?
生:
个
师:是的, 一个饼的
, 就 是
个。
师指着l÷4:把一个饼平均分给4人,每人分得多少个呢?通过列式以及分
饼得到1÷4就等于
个。
【评析:从商是整数的除法,演变到商是几分之 一 的除法,学生通过已有
的除法经验,不难想到计算的方法;而当总块数是1块饼的时候,学生也很容
易从分数意义的角度,用除法推想出分得的结果。从这两个角度出发,学生很
自然地就能在1÷4和
之间建立起相等的关系。基于这样的认识,再借助实物 建立起
块的表象,同时渗透度量的思想,依托分饼由“率”向“量”转换,
初步建立除法与分数的联系】
2、 操作比较
师:我们继续往下看,打开第四小组的盒子,盒子里有3个饼,还是分给4
人,平均每人分得多少个呢?可以怎么列式?
PPT:3个饼平均分给4人,每人分得多少个?
师:每人到底分得几个饼呢?你能用分一个饼的方法分一分这3个饼吗?小
面请小组人合作,动手分一分。操作之前请看要求:
PPT出示操作要求:①想一想:准备怎么分?
②分 一 分:把3个饼平均分给4个小组成员。
③说一说:每人分得多少个?
师:听明白了吗?同学们,开始吧。
学生动手操作,全班交流。
师:有交流,有操作。配合得特别好,谁能边演示边说说你们组的讨论的结
果 ?
小组一 :我们是1个饼1个饼分的。每次分 一个,把这1个饼平均分成4份
,每人分得其中的1份,这1份就是
个;再把第2个饼平均分成4份,每人又 得
.个;第3个饼平均分成4份,每人再得到1/4个。3次 一共分得3个
个, 也就是
个饼。
师:真好,和他分得一样的举手, (等学生举手) 一样的分法。哎?每人分
得3块饼,那这3块是几个饼呢?
生:
个
师:为了让大家一 眼看出,你能拼一拼吗?
生动手把其中的1份拼起来,就是1个饼的
, 就 是
个。 (四个都拼)
师:噢, 一 目了然。每人分得几个饼呢?
生:
个
师:这位同学特别好,刚刚学习1个饼的
就 是
个饼,那这里每人得3个
个,合在一起就是
个。
师:是这样分的举手,真棒,其他组还有不同的分法吗?
小组二:把3个饼摞在 一起,平均分成4份,每人分得1份。
师:那每人分得的1份是几个饼呢?
生:
个
师:你是怎么看出来的?
生:可以像那把它展开拼起来。
师:真会学习,快把你们的成果展示出来。
生把1份展开拼起来就是1个饼的
, 就 是
个饼。
师:是呀,3个饼的
就是1个饼的
, 也 就 是
个饼。 (师指着板贴说)
师:好,同学们,我们一起来看,有的小组是1个饼1个饼分的,每次分得
个,3次 一 共分得3个
个。 (师板贴:3个
个):有的小组是三个饼摞在 一起分的,平均分成4份,每人分得3个的
(师板贴3个饼的
师:不管一个饼一个饼的分,还是3个摞在一起分,每人都得到 ……
生:
个
(师板贴
个 )
师:所以3÷4,通过操作就等于
个。
师指着板书提问:同学们看4次分饼,每次都是分给4人,为什么分得的个
数不一样呢?
生:因为饼的总数不一样
师小结:是呀,虽然都是分得总数的
,但是总量不同,每一份的具体个数
也不同。总量÷平均分的份数=每人分得的数量当这个数量不能用整数表示的时
候,也可以用分数来表示。那这里的两个
表示的意义是一样的吗?
生:左边的
表示把单位“1”平均分成4份,表示其中的1份;右边的
是1÷4的结果,表示一个具体的数量。
师:是的,同一个分数既可以表示单位“1”的几分之几,也表示一个具体
的数量,这就是一个分数的两种意义。
师:假如第四组又来了一个同学,你能说说现在第四组平均每人分得多少个
吗?请同学们在脑中自己试着分分饼,并思考你是怎么分的?
3、 变式延伸
PPT:3个饼平均分给5人,每人分得多少个?
师:怎么列式?
生:
( 个 )
师:快来说说你是怎么想的?
生:我是一个一个分得,每次分得
个,3次分得3个
个,3个
个就是
个饼。
师:没有分饼说的还这么清晰,真棒。谁还有不同的分法?
生:我是3个饼摞在一起分,3个饼平均分成5份,每人分得其中的1份,
展开合起来也就是
个饼。
师:你的分法也很好,我们一起来梳理, 一个一个得分,每次分得
个,3 个
个就是
个。3个一起分,每次分得3个饼的
,拼起来就是一个饼的
也就是
个饼。两种不同的分法,最总每人都分得
个饼。所以,
( 个 )
师:如果3个饼平均分给7人,每人分得多少个?
生:
(个)
4、 总结关系
师:同学们,请仔细观察我们一起研究出来的这些算式,你有什么发现?
生:可以用一个分数表示除法算式的商。
师:这个同学发现可以用一个分数表示除法算式的商,你们都发现了吗?
生:都发现了。
师:那具体是怎么表示的呢?
生:用分数表示商时,可以用被除数表示分数的分子,除数表示分母。
师:结合已有知识,你能解释为什么可以用这样的分数来表示吗?
生:因为除法和分数表示平均分,被除数和分子都表示总数,除数和分母都 表示平均分的份数,它们表示的意义和结果相同,所以可以用分数表示除法算式
的商。
师:看来分数与除法有着密切的联系,你能用一句话概括出分数与除法的关
系吗?
生:被除数÷除数=被除数/分数
师:如果用a表示被除数,b表示除数,a÷b就等于 … …
生:
师:想一想,这里的a和b可以是任意的整数吗?
生:b≠0,因为0不能做除数,也不能为分母。
师:是的,当b=0时,整道除法算式就没有意义了。(师板书:b≠0)
师:通过分饼我们发现,两个数相除的商可以用分数来表示,分数也可以表
示两个数相除。那么,分数与除法一样吗?两者有什么不一样呢?
生1:除法是一种运算
生2:分数表示两个数相除,也表示一个具体的数量。
师:是的,这就是他们的不同。
【设计意图:本环节引导学生通过分饼活动充分体验到每人分得的块数是
饼的总数/分饼的人数,学生通过动手操作、观察、思考以及交流、讨论、汇报
等数学活动, 一方面可以理解分数是由多个分数单位合成的,另一方面也理解
了两种分法的关系。同时从
到
再到
、 …… 一系列变式延伸,让学生充分体
会到了分得的块数与饼的总量和人数之间的关系,在此基础上分数与除法的关 系模型已初步建立,这个环节利用“平均分”为切入点,巧妙揭示了分数与除
法的本质联系。】
三 . 巩固练习,内化新知
师:知道了分数与除法的关系,接下来我们做几道快速练习。
PPT:
师:
,你是怎么这么快就算出来了?
生:是用分数与除法的关系
师:这里的9相当于 ……
生:分子
师:5相当于 ……
生:分子
师:12÷6呢
生:
或 2
师:看到上面两道除法算式我们能想到一个分数,那看到一个分数我们也能
想到一个除法算式,例如
我们可以想到除法算式是 ……
生 : (7)÷(8)
师 :
呢 ?
生 : = ( 4 ) ÷ ( 7 )
师:看来同学们确实掌握了这个关系,而且也能初步解决一些问题,但今天
啊晨晨和兰兰因为 一 件事情争起来了。为什么吵呢?我们 一 起来看看。
PPT:晨晨和兰兰在用 一 根彩带包装礼品盒,他们是怎么包装的呢?谁来读
一 读?
生:晨晨说我把 一根3米长的彩带平均分成5段 .拿出 一 段来包装 .兰兰说我
把 一 根1米长的彩带平均分成5段 . 取其中的3段来包装。
师:那谁用的彩带长呢?学了今天的知识你能不能帮他们解决呢?
生: 一样长, 一根3米长的彩带平均分成5段 .拿出一段来包装
( 米 ) , 把 一 根 1 米 长 的 彩 带 平 均 分 成 5 段 , 先 求 一 段 用
( 米 ) , 3 个
( 米 )
师课件演示
求 3 米 的
, 用
( 米 ) 求 1 米 的
,我们先求5段中的1段,用l÷5=
( 米 ) 3 段 就 是 3 个
米,就是
米,所用兰兰和晨晨用的彩带是一样长的。
【设计意图:通过 一 个基础练习、 一 个生活问题这样层次的练习,帮助学 生巩固了分数与除法关系的知识。从数学问题到生活问题,层层递进。最后把
前后知识勾连,形成知识体系。】
四 、前后呼应,内化提升
师:同学们,通过这节课的学习,你有哪些收获?
生:我知道了可以用分数表示除法算式的商。
生:我学会了被除数÷除数=被除数/分数
师:是呀,这就是这节课我们学习的分数与除法的关系。同学们,回顾这节 课的学习过程,我们通过操作学具进行分饼活动,发现了分数可以表示一道除法 算式的商,并且掌握了如何用分数表示除法算式的商,就是被除数÷除数=被除 数/除数。原来同一个分数不但可以表示单位“1”的几分之几,还可以表示一个 具体的数量,下节课我们还会学习用分数表示两个量之间的关系。就让我们带着
敢于思考、不断探究的精神继续学习。这节课,我们就上到这,下课。
【设计意图:学生通过谈收获再次梳理了本节课的知识点,又一次加深了 分数与除法的关系,熟知一个分数的两种意义,并通过回顾这节课的学习过程,
将点状的知识串成线,进而为学生生搭建起完整的知识网络】
点赞____关注
特别声明
本文仅代表作者观点,不代表本站立场,本站仅提供信息存储服务。