一元三次方程求根公式怎么解(一元三次方程解法)_方程_求根_公式

本文目录

  • 一元三次方程解法
  • 一元三次方程的根如何求
  • 如何解一元三次方程 解一元三次方程的方法

一元三次方程解法

一元三次方程解法具体如下:

1、对于一般形式的一元三次方程。

2、做变换,差根变换,可以用综合除法。

3、化为不含二次项的一元三次方程。

4、想法把一元三次方程化成一元二次方程,关于u,v的三次方的二次方程,解出u,v。

5、求出三个根,即可得出一元三次方程三个根的求根公式。

一元三次方程解法思想是:通过配方和换元,使三次方程降次为二次方程求解.

拓展资料:

只 含有一个 未知数(即“元”),并且未知数的最高次数为3(即“次”)的整式方程叫作一元三次方程(英文名:one variable cubic equation)。

一元三次方程的标准形式(即所有一元三次方程经整理都能得到的形式)是 ax 3+ bx 2+ cx+ d=0( a, b, c, d为 常数, x为未知数,且 a≠0)。

一元三次方程的公式解法有卡尔丹公式法与盛金公式法。两种公式法都可以解标准型的一元三次方程。由于用卡尔丹公式解题存在复杂性,相比之下,盛金公式解题更为直观, 效率更高。

一元三次方程的根如何求

一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。
一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如
x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下:
(1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到
(2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3))
(3)由于x=A^(1/3)+B^(1/3),所以(2)可化为
x^3=(A+B)+3(AB)^(1/3)x,移项可得
(4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知
(5)-3(AB)^(1/3)=p,-(A+B)=q,化简得
(6)A+B=-q,AB=-(p/3)^3
(7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即
(8)y1+y2=-(b/a),y1*y2=c/a
(9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a
(10)由于型为ay^2+by+c=0的一元二次方程求根公式为
y1=-(b+(b^2-4ac)^(1/2))/(2a)
y2=-(b-(b^2-4ac)^(1/2))/(2a)
可化为
(11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2)
y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2)
将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得
(12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2)
B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2)
(13)将A,B代入x=A^(1/3)+B^(1/3)得
(14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3)

(14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了

如何解一元三次方程 解一元三次方程的方法

1、一元三次方程的求根公式称为“卡尔丹诺公式”。一元三次方程的一般形式是x3+sx2+tx+u=0。

2、如作一个横坐标平移y=x+s/3,那么就可以把方程的二次项消去。所以只要考虑形如x3=px+q的三次方程。

3、例子:假设方程的解x可以写成x=a-b的形式,这里a和b是待定的参数。

代入方程:a3-3a2b+3ab2-b3=p(a-b)+q

整理得到:a3-b3=(a-b)(p+3ab)+q;由二次方程理论可知,一定可以适当选取a和b,使得在x=a-b的同时,3ab+p=0。这样上式就成为a3-b3=q两边各乘以27a3,就得到27a6-27a3b3=27qa3。由p=-3ab可知,27a6+p=27qa3这是一个关于a3的二次方程,所以可以解得a。

特别声明

本文仅代表作者观点,不代表本站立场,本站仅提供信息存储服务。

分享:

扫一扫在手机阅读、分享本文