本文目录
- 求数学题
- 100道初三数学大题(绝对好的)
- 初三上半学期数学题有答案的[何题尽量少,应用题计算题多一点]要100道
- 100道九年级数学计算题
- 初三数学题
- 初三年数学计算题50-100道
- 求初三上学期数学题50道选择,50道填空,100道计算附答案100分给了!
求数学题
一、选择题(每小题5分,共60分. 每小题所给四个选项中,只有一个是符合题目要求的)
1.已知集合 ,则集合M的真子集个数是 ( )
A.8 B.7 C.6 D.4
2.同时满足下列三个条件的函数是 ( )
①有反函数 ②是奇函数 ③其定义域与值域相等
A. B.
C. D.
3.若 = ( )
A.3 B.-3 C.-2 D.
4.已知抛物线 、 ),则“此抛物线顶点在直线顶点在直线
下方”是“关于x的不等式ax2+bx+c《x有实数解”的 ( )
A.充分而不必要条件 B.必要而不充分条件
C.充要条件 D.既不充分也不必要条件
5.如图1所示四个图像:
与下列所给3件事吻合最好的图象顺序为 ( )
①我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学
②我骑着车以常速行驶,在途中遇到一次交通堵塞,耽搁了一些时间
③我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速
A.(1)(2)(3) B.(2)(3)(4) C.(3)(4)(1) D.(4)(1)(2)
6.已知 成等差数列, 成等比数列,且 ,则 的取值范
围是 ( )
A. B. C. D.
7.已知 是第二象限角,且 ,下列命题正确的是 ( )
A. B.
C.若 ,则 D.若 ,则
8.已知 是偶函数,则函数 的图像的对称轴是 ( )
A. B. C. D.
9.要得到函数 的图像,只需把函数 的图像
( )
A.向左平移 个单位 B.向右平移 个单位
C.向左平移 个单位 D.向右平移 个单位
10.有一个等差数列 与一个等比数列 ,它们的首项是一个相等的正数且第 项也相等,则第 项的大小关系为 ( )
A. B. C. D.
11.已知 在R上是减函数,且它的反函数为 ,如果A(-2,1)与B(2,-3)是 图像上的两点,则不等式 的解集是 ( )
A. B. C. D.
12.已知数列 满足 ,若 ,则 = ( )
A. B. C. D.
第Ⅱ卷(非选择题,共90分)
二、填空题(每小题4分,共16分. 把正确答案填在题中所给横线上)
13.设U为全集,集合 ,若 )≠ ,则
a的取值范围是 .
14.设 ,那么 .
15.已知数列 满足 ,则数列 的通项公式 =
.
16.函数 ,它的最小正周期为 ,且其图像关于直线
对称,则在下面四个结论中:①图像关于点( 对称;②图像关于点 对
称;③在[0, 上是增函数;④在[ 上是增函数.
所有正确结论的序号为 .
三、解答题(共74分. 解答须写出必要的文字说明、证明过程及演算步骤)
17.(本小题满分12分)
已知等比数列 中, ,公比 , 又分别是某等差数列的第7项,第3项,第1项.
(1)求 ;
(2)设 ,求数列 的前n项和Tn.
18.(本小题满分12分)
在△ABC中,角A、B、C所对的边分别是a、b、c,
(1)求 的值;
(2)若△ABC最长的边为1,求最短边的长.
19.(本小题满分12分)
已知定义域为的函数 同时满足:
①对于任意的 ,总有 ;② ;③若 ,
则有
(1)求f(0)的值;
(2)求 的最大值.
20.(本小题满分12分)
已知奇函数 在 上有意义,且在( )上是增函数, ,
又有函数 ,若集合 ,集合
(1)求 的解集.
(2)求
21.(本小题满分12分)
某公司生产的摩托车,1997年每辆车的成本为4000元,出厂价(出厂价=成本+利润)为4400元,从1998年开始,公司开展技术革新,降低成本,增加效益,预计2001年每辆车的利润达到当年成本的21%,并且每辆车的出厂价不超过1997年出厂价的70.4%.
(1)2001年平均每辆摩托车的成本x至多是多少?
(2)如果以1997年的成本为基数,1997~2001年,每年成本的降低率相同(设为y),
试写出y与x的关系式.
(3)在(2)的条件下,求每年成本至少降低百分之几?( 供参考)
22.(本小题满分14分)
已知函 ,数列 满足 ,且
(1)设 证明:
(2)设(1)中的数列 的前n项和为 ,证明
高三数学(理科)试卷参考答案
一、选择题:
1.B 2.B 3.A 4.A 5.D 6.C 7.C 8.D 9.A 10.C 11.A 12.A
二、填空题:
13.[-1,+∞ 14.5 15. 16.②④
三、解答题:
17.(1)依题意有 即 即
即
故
(2)
时,
故 .
18.(1)由 知B为锐角.
故
(2)由(1)知 ,故c边最长,即c=1,又 ,故b边最短
由正弦定理 得
即最短边的长为 .
19.(1)对于条件③,令
又由条件①知 故
(2)设 ,则
即 故 在上是单调递增的
从而 的最大值是
20.(1) 为奇函数且
又 在(1,+ )上是增函数 在(- ,0)上也是增函数
故 的解集为
(2)由(1)知
由 《-1得
即
,等号成立时
故4- ]的最大值是
从而 ,即
21.(1)依题意
解得
即2001年平均每辆摩托车的成本至多是2650元.
(2)
(3)
的最小值为
即每年成本至少降低10.56%.
22.(1)
(2)由(1)的证明过程可知
100道初三数学大题(绝对好的)
一元二次方程测试题
说明本试卷满分100分,考试时间100分钟
一、填充题:(2’×11=22’)
1、 方程x2= 的根为 。
2、 方程(x+1)2-2(x-1)2=6x-5的一般形式是 。
3、 关于x的一元二次方程x2+mx+3=0的一个根是1,则m的值为 。
4、 已知二次三项式x2+2mx+4-m2是一个完全平方式,则m= 。
5、 已知 +(b-1)2=0,当k为 时,方程kx2+ax+b=0有两个不等的实数根。
6、 关于x的方程mx2-2x+1=0只有一个实数根,则m= 。
7、 请写出一个根为1,另一个根满足-1《x《1的一元二次方程是 。
8、 关于x的方程x2-(2m2+m-6)x-m=0两根互为相反数,则m= 。
9、 已知一元二次方程(a-1)x2+x+a2-1=0的两根为x1,x2,且x1+x2= ,则x1,x2= 。
10某木材场原有木材存量为a立方米,已知木材每年以20%的增长率生长,到每年冬天砍伐的木材量为x立方米,则经过一年后木材存量为 立方米,经过两年后,木材场木材存量为b立方米,试写出a,b,m之间的关系式: 。
二、选择题:(3’×8=24’)
11、关于x的方程(m+1)x2+2mx-3=0是一元二次方程,则m的取值是( )
A、任意实数 B、m≠1 C、m≠-1 D、m》-1
12、下面是某同学在一次数学测验中解答的填空题,其中答对的是( )
A、 若x2=4,则x=2 B、若3x2=bx,则x=2
C、 x2+x-k=0的一个根是1,则k=2
D、若分式 的值为零,则x=2
13、方程(x+3)(x-3)=4的根的情况是( )
A、无实数根 B、有两个不相等的实数根 C、两根互为倒数 D、两根互为相反数
14、一元二次方程x2-3x-1=0与x2+4x+3=0的所有实数根的和等于( )。
A、-1 B、-4 C、4 D、3
15、已知方程( )2-5( )+6=0,设 =y则可变为( )。
A、y2+5y+6=0 B、y2-5y+6=0 C、y2+5y-6=0 D、y2-5y-6=0
16、某超市一月份的营业额为100万元,第一季度的营业额共800万元,如果平均每月增长率为x,则所列方程应为( )
A、100(1+x)2=800 B、100+100×2x=800 C、100+100×3x=800 D、100=800
17、已知一元二次方程2x2-3x+3=0,则( )
A、两根之和为-1.5 B、两根之差为-1.5 C、两根之积为-1.5 D、无实数根
18、已知a2+a2-1=0,b2+b2-1=0且a≠b,则ab+a+b=( )
A、2 B、-2 C、-1 D、0
三、解下列方程:(5’×5=25’)
19、(x-2)2-3=0 20、2x2-5x+1=0(配方法)
21、x(8+x)=16 22、
23、(2x-3)2-2(2x-3)-3=0
四、解答题。
24、已知三角形的两边长分别是3和8,第三边的数值是一元二次方程x2-17x+66=0的根。求此三角形的周长。(6’)
25、某灯具店采购了一批某种型号的节能灯,共用去400元,在搬运过程中不慎打碎了5盏,该店把余下的灯每盏加价4元全部售出,然后用所得的钱又采购了一批这种节能灯,且进价与上次相同,但购买的数量比上次多了9盏,求每盏灯的进价。(6’)
26、在Rt△ABC中,∠C=90°,斜边C=5,两直角边的长a,b是关于x的一元二次方程x2-mx+2m-2=0的两根,(1)求m的值(2)求△ABC的面积(3)求较小锐角的正弦值。(8’)
一元二次方程的根与系数的关系
一、填空题
1.α、β是方程 的两根,则α+β=__________,αβ=__________, __________, __________。
2.如果3是方程 的一个根,则另一根为__________,a=__________。
3.方程 两根为-3和4,则ab=__________。
4.以 和 为根的一元二次方程是__________。
5.若矩形的长和宽是方程 的两根,则矩形的周长为__________,面积为__________。
6.方程 的根的倒数和为7,则m=__________。
二、选择题
1.满足两实根和为4的方程是( )。
(A) (B)
(C) (D)
2.若k>1,则关于x的方程 的根的情况是( )。
(A)有一正根和一负根 (B)有两个正根
(C)有两个负根 (D)没有实数根
3.已知两数和为-6,两数积为2,则这两数为( )。
(A) , (B) ,
(C) , (D) ,
4.若方程 两根之差的绝对值为8,则p的值为( )。
(A)2 (B)-2
(C)±2 (D)
三、解答题
1.已知 、 是方程 的两个实数根,且 ,求k的值。
2.不解方程,求作一个新的一元二次方程,使它的两根分别为方程 两根的平方。
3.如果关于x的方程 的两个实数根都小于1,求m的取值范围。
4.m为何值时,方程
(1)两根互为倒数;
(2)有两个正根;
(3)有一个正根一个负根。
参考答案
一、
1.1, ,2,-2
2.-2,-1
3.-48
4.
5.6,
6.
二、
1.B
2.B
3.D
4.C
三、
1.1
2.
3.
4.(1)m=-1
(2)-1≤m<0
(3)m>0
初三上半学期数学题有答案的[何题尽量少,应用题计算题多一点]要100道
计算题:
带“”的均为次方。
-3“2”+(-1/5)*(-15)/(-3)
=-3*3+(-1/5)*(-15)*(-1/3)
-9+【-(1/5*15*1/3)】
=-10
(-1/8-1/36+3/4-1/18)*(-72)
=(-1/8)*(-72)+(-1/36)*(-72)+3/4*(-72)+(-1/18)*(-72)
=9+2-54+4
=-39
(8-4/3-0.04)/(-4/3)
=(8-4/3-1/25)*(-3/40
=497/100
-1“4”+(0.5-1)/3*【2-(-3)“2”】
=-1+(-0.5)*1/3*(-7)
=1/6
-0.25“2”/(-1/2)“3”+(1/8-1/2)*(-1)“100”
=-0.0625*(-8)+(-3/8)*1
=1/8
【2“3”+3-9*2+40】*(-1/8)
=【8+3-9*2+40】*(-1/8)
=1/8
18-6/(-2)*(-1/3)“2”
=18-6/(-2)*1/9
=18+1/3
=55/3
我看过了,这些题还是比较简单的,自己试着做做O(∩_∩)O~,相信你能行
-2/9-7/9-56
4.6-(-3/4+1.6-4-3/4)
1/2+3+5/6-7/12
/1/3+2
22+(-4)+(-2)+4*3
-2*8-8*1/2+8/1/8
(2/3+1/2)/(-1/12)*(-12)
(-28)/(-6+4)+(-1)
2/(-2)+0/7-(-8)*(-2)
(1/4-5/6+1/3+2/3)/1/2
18-6/(-3)*(-2)
(5+3/8*8/30/(-2)-3
(-84)/2*(-3)/(-6)
1/2*(-4/15)/2/3
-1+2-3+4-5+6-7
-50-28+(-24)-(-22)
-19.8-(-20.3)-(+20.2)-10.8
0.25- +(-1 )-(+3 )
-1-〔1-(1-0.6÷3)〕×〔2-(-3)×(-4)〕
0÷(-4)-42-(-8)÷(-1)3
-32-(-3) 2-(-3)3+(-1)6
3×(-2)2+(-2×3)2+(-2+3)2
(-12)÷4×(-6)÷2
(-12)÷4×(-6)×2
75÷〔138÷(100-54)〕
85×(95-1440÷24)
80400-(4300+870÷15)
240×78÷(154-115)
1437×27+27×563
〔75-(12+18)〕÷15
2160÷〔(83-79)×18〕
280+840÷24×5
325÷13×(266-250)
85×(95-1440÷24)
58870÷(105+20×2)
1437×27+27×563
81432÷(13×52+78)
×30
156×
(947-599)+76×64
36×(913-276÷23)
-(3.4 1.25×2.4)
0.8×〔15.5-(3.21 5.79)〕
(31.8 3.2×4)÷5
194-64.8÷1.8×0.9 36.72÷4.25×9.9
3.416÷(0.016×35)
0.8×
(136+64)×(65-345÷23)
(6.8-6.8×0.55)÷8.5
0.12× 4.8÷0.12×4.8
(58+37)÷(64-9×5)
812-700÷(9+31×11)
(3.2×1.5+2.5)÷1.6
85+14×(14+208÷26)
120-36×4÷18+35
(284+16)×(512-8208÷18)
9.72×1.6-18.305÷7
4/7÷
(4/5+1/4)÷7/3+7/10
12.78-0÷( 13.4+156.6 )
37.812-700÷(9+31×11)
(136+64)×(65-345÷23)
3.2×(1.5+2.5)÷1.6
85+14×(14+208÷26)
(58+37)÷(64-9×5)
(6.8-6.8×0.55)÷8.5
(284+16)×(512-8208÷18)
0.12× 4.8÷0.12×4.8
(3.2×1.5+2.5)÷1.6
120-36×4÷18+35
10.15-10.75×0.4-5.7
5.8×(3.87-0.13)
+4.2×3.74 347+45×2-4160÷52
32.52-(6+9.728÷3.2)×2.5 87(58+37)÷(64-9×5)
÷2.5 (3.2×1.5+2.5)÷1.6
5.4÷ 12×6÷(12-7.2)-6
3.2×6+(1.5+2.5)÷1.6 (3.2×1.5+2.5)÷1.6
5.8×(3.87-0.13)+4.2×3.74
33.02-(148.4-90.85)÷2.5
应用题
几何去看看有没有用
100道九年级数学计算题
1)x^2-9x+8=0 答案:x1=8 x2=1
(2)x^2+6x-27=0 答案:x1=3 x2=-9
(3)x^2-2x-80=0 答案:x1=-8 x2=10
(4)x^2+10x-200=0 答案:x1=-20 x2=10
(5)x^2-20x+96=0 答案:x1=12 x2=8
(6)x^2+23x+76=0 答案:x1=-19 x2=-4
(7)x^2-25x+154=0 答案:x1=14 x2=11
(8)x^2-12x-108=0 答案:x1=-6 x2=18
(9)x^2+4x-252=0 答案:x1=14 x2=-18
(10)x^2-11x-102=0 答案:x1=17 x2=-6
(11)x^2+15x-54=0 答案:x1=-18 x2=3
(12)x^2+11x+18=0 答案:x1=-2 x2=-9
(13)x^2-9x+20=0 答案:x1=4 x2=5
(14)x^2+19x+90=0 答案:x1=-10 x2=-9
(15)x^2-25x+156=0 答案:x1=13 x2=12
(16)x^2-22x+57=0 答案:x1=3 x2=19
(17)x^2-5x-176=0 答案:x1=16 x2=-11
(18)x^2-26x+133=0 答案:x1=7 x2=19
(19)x^2+10x-11=0 答案:x1=-11 x2=1
(20)x^2-3x-304=0 答案:x1=-16 x2=19
(21)x^2+13x-140=0 答案:x1=7 x2=-20
(22)x^2+13x-48=0 答案:x1=3 x2=-16
(23)x^2+5x-176=0 答案:x1=-16 x2=11
(24)x^2+28x+171=0 答案:x1=-9 x2=-19
(25)x^2+14x+45=0 答案:x1=-9 x2=-5
(26)x^2-9x-136=0 答案:x1=-8 x2=17
(27)x^2-15x-76=0 答案:x1=19 x2=-4
(28)x^2+23x+126=0 答案:x1=-9 x2=-14
(29)x^2+9x-70=0 答案:x1=-14 x2=5
(30)x^2-1x-56=0 答案:x1=8 x2=-7
(31)x^2+7x-60=0 答案:x1=5 x2=-12
(32)x^2+10x-39=0 答案:x1=-13 x2=3
(33)x^2+19x+34=0 答案:x1=-17 x2=-2
(34)x^2-6x-160=0 答案:x1=16 x2=-10
(35)x^2-6x-55=0 答案:x1=11 x2=-5
(36)x^2-7x-144=0 答案:x1=-9 x2=16
(37)x^2+20x+51=0 答案:x1=-3 x2=-17
(38)x^2-9x+14=0 答案:x1=2 x2=7
(39)x^2-29x+208=0 答案:x1=16 x2=13
(40)x^2+19x-20=0 答案:x1=-20 x2=1
(41)x^2-13x-48=0 答案:x1=16 x2=-3
(42)x^2+10x+24=0 答案:x1=-6 x2=-4
(43)x^2+28x+180=0 答案:x1=-10 x2=-18
(44)x^2-8x-209=0 答案:x1=-11 x2=19
(45)x^2+23x+90=0 答案:x1=-18 x2=-5
(46)x^2+7x+6=0 答案:x1=-6 x2=-1
(47)x^2+16x+28=0 答案:x1=-14 x2=-2
(48)x^2+5x-50=0 答案:x1=-10 x2=5
(49)x^2+13x-14=0 答案:x1=1 x2=-14
(50)x^2-23x+102=0 答案:x1=17 x2=6
(51)x^2+5x-176=0 答案:x1=-16 x2=11
(52)x^2-8x-20=0 答案:x1=-2 x2=10
(53)x^2-16x+39=0 答案:x1=3 x2=13
(54)x^2+32x+240=0 答案:x1=-20 x2=-12
(55)x^2+34x+288=0 答案:x1=-18 x2=-16
(56)x^2+22x+105=0 答案:x1=-7 x2=-15
(57)x^2+19x-20=0 答案:x1=-20 x2=1
(58)x^2-7x+6=0 答案:x1=6 x2=1
(59)x^2+4x-221=0 答案:x1=13 x2=-17
(60)x^2+6x-91=0 答案:x1=-13 x2=7
(61)x^2+8x+12=0 答案:x1=-2 x2=-6
(62)x^2+7x-120=0 答案:x1=-15 x2=8
(63)x^2-18x+17=0 答案:x1=17 x2=1
(64)x^2+7x-170=0 答案:x1=-17 x2=10
(65)x^2+6x+8=0 答案:x1=-4 x2=-2
(66)x^2+13x+12=0 答案:x1=-1 x2=-12
(67)x^2+24x+119=0 答案:x1=-7 x2=-17
(68)x^2+11x-42=0 答案:x1=3 x2=-14
(69)x^20x-289=0 答案:x1=17 x2=-17
(70)x^2+13x+30=0 答案:x1=-3 x2=-10
(71)x^2-24x+140=0 答案:x1=14 x2=10
(72)x^2+4x-60=0 答案:x1=-10 x2=6
(73)x^2+27x+170=0 答案:x1=-10 x2=-17
(74)x^2+27x+152=0 答案:x1=-19 x2=-8
(75)x^2-2x-99=0 答案:x1=11 x2=-9
(76)x^2+12x+11=0 答案:x1=-11 x2=-1
(77)x^2+17x+70=0 答案:x1=-10 x2=-7
(78)x^2+20x+19=0 答案:x1=-19 x2=-1
(79)x^2-2x-168=0 答案:x1=-12 x2=14
(80)x^2-13x+30=0 答案:x1=3 x2=10
(81)x^2-10x-119=0 答案:x1=17 x2=-7
(82)x^2+16x-17=0 答案:x1=1 x2=-17
(83)x^2-1x-20=0 答案:x1=5 x2=-4
(84)x^2-2x-288=0 答案:x1=18 x2=-16
(85)x^2-20x+64=0 答案:x1=16 x2=4
(86)x^2+22x+105=0 答案:x1=-7 x2=-15
(87)x^2+13x+12=0 答案:x1=-1 x2=-12
(88)x^2-4x-285=0 答案:x1=19 x2=-15
(89)x^2+26x+133=0 答案:x1=-19 x2=-7
(90)x^2-17x+16=0 答案:x1=1 x2=16
(91)x^2+3x-4=0 答案:x1=1 x2=-4
(92)x^2-14x+48=0 答案:x1=6 x2=8
(93)x^2-12x-133=0 答案:x1=19 x2=-7
(94)x^2+5x+4=0 答案:x1=-1 x2=-4
(95)x^2+6x-91=0 答案:x1=7 x2=-13
(96)x^2+3x-4=0 答案:x1=-4 x2=1
(97)x^2-13x+12=0 答案:x1=12 x2=1
(98)x^2+7x-44=0 答案:x1=-11 x2=4
(99)x^2-6x-7=0 答案:x1=-1 x2=7
(100)x^2-9x-90=0 答案:x1=15 x2=-6
初三数学题
初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么()A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。2.下面的说法中正确的是()A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x²,x3都是单项式.两个单项式x3,x²之和为x3+x²是多项式,排除A。两个单项式x²,2x2之和为3x2是单项式,排除B。两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。3.下面说法中不正确的是()A.有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:最大的负整数是-1,故C错误。4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么()A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有()A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。这四种说法中,不正确的说法的个数是()A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故丙错误。7.a代表有理数,那么,a和-a的大小关系是()A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上可以排除A、B、C,应选D。8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边()A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B。同理应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是()A.一样多B.多了C.少了D.多少都可能答案:C解析:设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;第三天杯中水量与第一天杯中水量之比为0.99∶1,所以第三天杯中水量比第一天杯中水量少了,选C。10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将()A.增多B.减少C.不变D.增多、减少都有可能答案:A二、填空题(每题1分,共10分)1.19891990²-19891989²=______。答案:19891990²-19891989²=(19891990+19891989)×(19891990-19891989)=(19891990+19891989)×1=39783979。解析:利用公式a²-b²=(a+b)(a-b)计算。2.1-2+3-4+5-6+7-8+…+4999-5000=______。答案:1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500。解析:本题运用了运算当中的结合律。3.当a=-0.2,b=0.04时,代数式a²-b的值是______。答案:0解析:原式==(-0.2)²-0.04=0。把已知条件代入代数式计算即可。4.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______千克。答案:45(千克)解析:食盐30%的盐水60千克中含盐60×30%(千克),设蒸发变成含盐为40%的水重x克,即60×30%=40%x解得:x=45(千克)。遇到这一类问题,我们要找不变量,本题中盐的含量是一个不变量,通过它列出等式进行计算。三、解答题1.甲乙两人每年收入相等,甲每年储蓄全年收入的,乙每月比甲多开支100元,三年后负债600元,求每人每年收入多少?答案:解:设每人每年收入x元,甲每年开支4/5x元,依题意有:3(4/5x+1200)=3x+600即(3-12/5)x=3600-600解得,x=5000答:每人每年收入5000元所以S的末四位数字的和为1+9+9+5=24。4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程。答案:设上坡路程为x千米,下坡路程为y千米.依题意则:由②有2x+y=20, ③由①有y=12-x,将之代入③得2x+12-x=20。所以x=8(千米),于是y=4(千米)。答:上坡路程为8千米,下坡路程为4千米。5.求和:。答案:第n项为 所以。6.证明:质数p除以30所得的余数一定不是合数。证明:设p=30q+r,0≤r<30,因为p为质数,故r≠0,即0<r<30。假设r为合数,由于r<30,所以r的最小质约数只可能为2,3,5。再由p=30q+r知,当r的最小质约数为2,3,5时,p不是质数,矛盾。所以,r一定不是合数。解:设由①式得(2p-1)(2q-1)=mpq,即(4-m)pq+1=2(p+q)。可知m<4.由①,m>0,且为整数,所以m=1,2,3.下面分别研究p,q。 (1)若m=1时,有解得p=1,q=1,与已知不符,舍去.(2)若m=2时,有因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解. (3)若m=3时,有 解之得故p+q=8。初中奥数题试题二一、选择题1.数1是()A.最小整数B.最小正数C.最小自然数D.最小有理数答案:C解析:整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D。1是最小自然数,正确,故选C。2.a为有理数,则一定成立的关系式是()A.7a>aB.7+a>aC.7+a>7D.|a|≥7答案:B解析:若a=0,7×0=0排除A;7+0=7排除C;|0|<7排除D,事实上因为7>0,必有7+a>0+a=a.选B。3.3.1416×7.5944+3.1416×(-5.5944)的值是()A.6.1632B.6.2832C.6.5132D.5.3692答案:B解析:3.1416×7.5944+3.1416×(-5.5944)=3.1416(7.5944-5.5944)=2×3.1416=6.2832,选B。4.在-4,-1,-2.5,-0.01与-15这五个数中,最大的数与绝对值最大的那个数的乘积是()A.225B.0.15C.0.0001D.1答案:B解析:-4,-1,-2.5,-0.01与-15中最大的数是-0.01,绝对值最大的数是-15,(-0.01)×(-15)=0.15,选B。二、填空题1.计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______。答案:(-1)+(-1)-(-1)×(-1)÷(-1)=(-2)-(-1)=-1。2.求值:(-1991)-|3-|-31||=______。答案:(-1991)-|3-|-31||=-1991-28=-2019。3.n为正整数,1990n-1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009。则n的最小值等于______。答案:4解析:1990n的末四位数字应为1991+8009的末四位数字.即为0000,即1990n末位至少要4个0,所以n的最小值为4。4.不超过(-1.7)²的最大整数是______。答案:2解析:(-1.7)²=2.89,不超过2.89的最大整数为2。5.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______。答案:29解析:个位数比十位数大7的两位数有18,29,其中只有29是质数。三、解答题1.已知3x2-x=1,求6x3+7x2-5x+2000的值。答案:原式=2x(3x2-x)+3(3x2-x)-2x+2000=2x×1+3×1-2x+2000=2003。2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件。试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?答案:原来每天可获利4×100元,若每件提价x元,则每件商品获利(4+x)元,但每天卖出为(100-10x)件。如果设每天获利为y元,则y=(4+x)(100-10x)=400+100x-40x-10x2=-10(x2-6x+9)+90+400=-10(x-3)2+490。所以当x=3时,y最大=490元,即每件提价3元,每天获利最大为490元。3.如图1-96所示,已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°。求证:DA⊥AB。证明:∵CE平分∠BCD,DE平分∠ADC及∠1+∠2=90°,∴∠ADC+∠BCD=180°,∴AD∥BC。又∵ AB⊥BC,∴AB⊥AD。4.求方程|xy|-|2x|+|y|=4的整数解。答案:|x||y|-2|x|+|y|=4,即|x|(|y|-2)+(|y|-2)=2, 所以(|x|+1)(|y|-2)=2。因为|x|+1>0,且x,y都是整数,所以5.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(一年期定期储蓄年利率为5.22%)答案:设设王平买三年期和五年期国库券分别为x元和y元,则因为 y=35000-x,所以x(1+0.0711×3)(1+0.0522)2+(35000-x)(1+0.0786×5)=47761,所以1.3433x+48755-1.393x=47761,所以0.0497x=994,所以x=20000(元),y=35000-20000=15000(元)。6.对k,m的哪些值,方程组至少有一组解?答案:因为(k-1)x=m-4,①m为一切实数时,方程组有唯一解.当k=1,m=4时,①的解为一切实数,所以方程组有无穷多组解。当k=1,m≠4时,①无解。所以,k≠1,m为任何实数,或k=1,m=4时,方程组至少有一组解。初中奥数题试题三一、选择题1.下面给出的四对单项式中,是同类项的一对是()A.x²y与-3x²zB.3.22m²n3与n3m²C.0.2a²b与0.2ab²D.11abc与ab答案:B解析:字母相同,并且相同字母的指数也相同的两个式子叫同类项。2.(x-1)-(1-x)+(x+1)等于()A.3x-3B.x-1C.3x-1D.x-3答案:C解析:(x-1)-(1-x)+(x+1)=x-1-1+x+x+1=3x-1,选C。3.两个10次多项式的和是()A.20次多项式B.10次多项式C.100次多项式D.不高于10次的多项式答案:D解析:多项式x10+x与-x10+x²之和为x²+x是个次数低于10次的多项式,因此排除了A、B、C,选D。4.若a+1<0,则在下列每组四个数中,按从小到大的顺序排列的一组是()A.a,-1,1,-aB.-a,-1,1,aC.-1,-a,a,1D.-1,a,1,-a答案:A解析:由a+1<0,知a<-1,所以-a>1。于是由小到大的排列次序应是a<-1<1<-a,选A。5.a=-123.4-(-123.5),b=123.4-123.5,c=123.4-(-123.5),则()A.c>b>aB.c>a>bC.a>b>cD.b>c>a答案:B解析:易见a=-123.4+123.5=0.1,b=123.4-123.5<0,c=123.4-(-123.5)>123.4>a,所以b<a<c,选B。6.若a<0,b>0,且|a|<|b|,那么下列式子中结果是正数的是()A.(a-b)(ab+a)B.(a+b)(a-b)C.(a+b)(ab+a)D.(ab-b)(a+b)答案:A因为a<0,b>0.所以|a|=-a,|b|=b.由于|a|<|b|得-a<b,因此a+b>0,a-b<0。ab+a<0,ab-b<0。所以应有(a-b)(ab+a)>0成立,选A。7.从2a+5b减去4a-4b的一半,应当得到()A.4a-bB.b-aC.a-9bD.7b答案:D解析:=2a+5b-2a+2b=7b,选D。8.a,b,c,m都是有理数,并且a+2b+3c=m,a+b+2c=m,那么b与c()A.互为相反数B.互为倒数C.互为负倒数D.相等答案:A解析:因为a+2b+3c=m=a+b+2c,所以b+c=0,即b,c互为相反数,选A。9.张梅写出了五个有理数,前三个有理数的平均值为15,后两个有理数的平均值是10,那么张梅写出的五个有理数的平均值是()A.5B.8C.12D.13答案:D解析:前三个数之和=15×3,后两个数之和=10×2。所以五个有理数的平均数为(45+20)÷5=13,选D。二、填空题(每题1分,共10分)1.2+(-3)+(-4)+5+6+(-7)+(-8)+9+10+(-11)+(-12)+13+14+15=______。答案:29解析:前12个数,每四个一组,每组之和都是0.所以总和为14+15=29。2.若P=a²+3ab+b²,Q=a²-3ab+b²,则代入到代数式P-=2(6ab)=12ab。3.小华写出四个有理数,其中每三数之和分别为2,17,-1,-3,那么小华写出的四个有理数的乘积等于______。答案:-1728。解析:设这四个有理数为a、b、c、d,则有3(a+b+c+d)=15,即a+b+c+d=5。分别减去每三数之和后可得这四个有理数依次为3,-12,6,8,所以,这四个有理数的乘积=3×(-12)×6×8=-1728。4.一种小麦磨成面粉后,重量要减少15%,为了得到4250公斤面粉,至少需要______公斤的小麦。答案:5000解析:设需要x公斤的小麦,则有x(x-15%)=4250x=5000三、解答题答案:原式化简得6(a-1)x=3-6b+4ab,当a≠1时,答案:3.液态农药一桶,倒出8升后用水灌满,再倒出混合溶液4升,再用水灌满,这时农药的浓度为72%,求桶的容量。答案:去分母、化简得7x2-300x+800=0,即7x-20)(x-40)=0,4.6.设P是△ABC内一点.求:P到△ABC三顶点的距离和与三角形周长之比的取值范围。答案:如图1-105所示。在△PBC中有BC<PB+PC,①延长BP交AC于D.易证PB+PC<AB+AC,② 由①,②BC<PB+PC<AB+AC,③ 同理AC<PA+PC<AC+BC,④AB<PA+PB<AC+AB。⑤ ③+④+⑤得AB+BC+CA<2(PA+PB+PC)<2(AB+BC+CA)。所以。5.甲乙两人同时从东西两站相向步行,相会时,甲比乙多行24千米,甲经过9小时到东站,乙经过16小时到西站,求两站距离。答案:设甲步行速度为x千米/小时,乙步行速度为y千米/小时,则所求距离为(9x+16y)千米;依题意得: 由①得16y2=9x2,③由②得16y=24+9x,将之代入③得即(24+9x)2=(12x)2.解之得 于是 所以两站距离为9×8+16×6=168(千米)。
初三年数学计算题50-100道
知道贴不下那么多题目,就给你网址好了,自行下载
www.jyeoo.com/math/ques/search?f=0&s=23&t=9&q=9f7487d9-c8bb-44a1-a4a8-99b520ba078f~fa08c154-2215-4dce-85f4-bcf111db49b8
www.jyeoo.com/math/ques/search?f=0&s=23&t=9&q=1ad38814-732a-4df7-a862-9a9177330c19~a7a1dba9-f771-40ca-add5-c60adc2846f4
求初三上学期数学题50道选择,50道填空,100道计算附答案100分给了!
一、选择题:(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的代号填在答题纸对应的位置上.)
1.下列二次根式,属于最简二次根式的是( )
A. B C. D.
2.在平面直角坐标系中,抛物线 与 轴的交点的个数是 ( )
A.3 B.2 C.1 D.0
3.方程 的根为( )
A. B. C. D.
4.如图1,为了测量一池塘的宽DE,在岸边找一点C,测得CD=30m,在DC的延长线上找一点A,测得AC=5m,过点A作AB‖DE,交EC的延长线于B,测得AB=6m,则池塘的宽DE为( )
A、25m B、30m
C、36m D、40m
5. 在△ABC中,斜边AB=4,∠B=60°,将△ABC绕点B旋转60°,顶点C运动的路线长是( )
A. B. C. D.
6 .矩形ABCD,AB=4,BC=3,以直线AB为轴旋转一周所得到的圆柱侧面积为
A.20л B.24л C.28л D.32л
7 .下列命题错误的是( )
A.经过三个点一定可以作圆
B.三角形的外心到三角形各顶点的距离相等
C.同圆或等圆中,相等的圆心角所对的弧相等
D.经过切点且垂直于切线的直线必经过圆心
8. 张华想他的王老师发短信拜年,可一时记不清王老师手机号码后三位数的顺序,只记得是1,6,9三个数字,则张华一次发短信成功的概率是( )
A. B. C. D.
9.烟花厂为庆祝澳门回归10周年特别设计制作一种新型礼炮,这种礼炮的升空高度 与飞行时间 的关系式是 ,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( )
(A) (B) (C) (D)
10.小明从图所示的二次函数 的图象中,观察得出了下面五条信息:① ;② ;③ ;④ ;⑤ ,
其中正确的有
A.1个 B.2个 C.3个 D.4个
二、填空题:(题共6题,每小题4共24不需写出解答过程,请将最后结果填在答题纸对应的位置上.)
11.若 ,则 。
12.某县2008年农民人均年收入为7 800元,计划到2010年,农民人均年收入达到9 100元.设人均年收入的平均增长率为 ,则可列方程 .
13. 在“石头.剪子.布”的游戏中,两人做同样手势的概率是
14.两个圆的半径分别为3和4,圆心之间的距离是5,这两个圆的位置关系是 .
15.若A( ),B( ),C( )为二次函数 的图象上的三点,则 的大小关系是
16让我们轻松一下,做一个数字游戏:第一步:取一个自然数n1=5 ,计算n12+1得a1; 第二步:算出a1的各位数字之和得n2,计算n22+1得a2;第三步:算出a2的各位数字之和得n3,再计算n32+1得a3;………… 依此类推,则a2010=_______________.
三、解答题:本大题共9小题,共86分.解答时,在答题纸的相应的位置上写出文字说明、证明过程或演算步骤
17.(每小题4分,共8分)(1)
(2)解方程:
18. (6分)已知:关于 的方程
(1)求证:方程有两个不相等的实数根;
(2)若方程的一个根是 ,求另一个根及 值.
19. (8分) 一个不透明的口袋里装着红、黄、绿三种只有颜色不同的球,其中红球有2个,黄球有1个,从中任意摸出1球是红球的概率为 .
(1)试求袋中绿球的个数; (2)第1次从袋中任意摸出l球(不放回),第2次再任意摸出1球,请你用画树状图或列表格的方法,求两次都摸到红球的概率.
20、(8分)如图,E为正方形ABCD的边AB上一 点(不含A、B点),F为BC边的延长线上一点,△DAE旋转后能与△DCF重合.
(1)旋转中心是哪一点?
(2)旋转了多少度?
(3)如果连结EF,那么△DEF是怎样的三角形?
21.(本题满分8分)如图,PA,PB是⊙O的切线,点A,B为切点,AC是⊙O的直径,∠ACB=70°.求∠P的度数.
22、(本题10分)如图,路灯( 点)距地面8米,身高1.6米的小明从距路灯的底部( 点 )20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?
23、(12分)医药公司推出了一种抗感冒药,年初上市后,公司经历了从亏损到盈利的过程. 如图的二次函数图象(部分)表示了该公司年初以来累积利润S(万元)与时间 (月)之间的关系(即前 个月的利润总和S与 之间的关系).
根据图象提供信息,解答下列问题:
(1)公司从第几个月末开始扭亏为盈;
(2)累积利润S与时间 之间的函数关系式;
(3)求截止到几月末公司累积利润可达30万元;
(4)求第8个月公司所获利是多少元?
24.(本题满分12分)如图,已知⊙O的直径AB=2,直线m与⊙O相切于点A,P为⊙O上一动点(与点A、点B不重合),PO的延长线与⊙O相交于点C,过点C的切线与直线m相交于点D.
(1)求证:△APC∽△COD
(2)设AP=x,OD=y,试用含x的代数式表示y.
(3)试探索x为何值时,△ACD是一个等边三角形.
25.(本题14分)已知抛物线 经过点A(5,0)、B(6,–6)和原点.
(1)求抛物线的函数关系式;
(2)过点C(1,4)作平行于x轴的直线交y轴于点D,在抛物线对称轴右侧位于直线DC下方的抛物线上,任取一点P,过点P作直线PF平行于y轴交x轴于点F,交直线DC于点E. 直线PF与直线DC及两坐标轴围成矩形OFED(如图),是否存在点P,使得 OCD与 CPE相似?若存在,求出点P的坐标;若不存在,请说明理由.
答案
题号 1 2 3 4 5 6 7 8 9 10
选项 D B B C B B A A B D
18.(1) ,
, 2分
无论 取何值, ,所以 ,即 ,
方程 有两个不相等的实数根. 3分
(2)设 的另一个根为 ,
则 , , 4分
解得: , ,
的另一个根为 , 的值为1.
23.(1)由图象可知公司从第4个月末以后开始扭亏为盈. ………………………(1分)
(2)由图象可知其顶点坐标为(2,-2),
故可设其函数关系式为:y=a(t-2)2-2. …………(2分
∵ 所求函数关系式的图象过(0,0),于是得
a(t-2)2-2=0,解得a= . ……(4分)
∴ 所求函数关系式为:S= t-2)2-2或S= t2-2t. …………(6分)
(3)把S=30代入S= t-2)2-2,得 t-2)2-2=30. …………(7分)
解得t1=10,t2=-6(舍去). ……………………(8分)
答:截止到10月末公司累积利润可达30万元. ………………………(9分)
(4)把t=7代入关系式,得S= ×72-2×7=10.5 ……………………………(10分)
把t=8代入关系式,得S= ×82-2×8=16
16-10.5=5.5 …………(11
答:第8个月公司所获利是5.5万元. ………………………………(12分)
自己看着给分!!!!!!!!!!!!!!!!!!!!
特别声明
本文仅代表作者观点,不代表本站立场,本站仅提供信息存储服务。