本文目录
- 有没有可能人类已经知道了永生的秘密但没有发表
- 天文学家是如何测量天体距离的
- 是什么原因导致造父变星的亮度有规律变化的
- 细菌学和病毒学是怎样发展的
有没有可能人类已经知道了永生的秘密但没有发表
研究透了细胞就能永生了?
永生曾经被认为是可能的
一百年前有位科学大牛也这么想,他是法国外科医生和生物学家艾利希斯・卡瑞尔(Alexis Carrel),1912年因为血管缝合技术获得诺贝尔生理学和医学奖。
也是从1912年开始,就职于洛克菲勒研究所的卡瑞尔相信细胞能够永生,就开始培养鸡的心脏细胞,一直培养到他1939年退休回法国,然后由其他人继续培养到1946年。
卡瑞尔死于1944年,但他认为生命有可能永生。
因为他的鸡心细胞培养,科学界认为细胞是永生的。
海弗利克极限。
1961年,雷纳德·海弗利克(Leonard Hayflick)将胎儿细胞放到培养皿中,发现这些细胞不能无限传代,传到50代左右就死亡了,这就是人衰老和死亡的秘密,被称为海弗利克极限。
海弗利克证明,并非生长条件决定细胞能繁殖多少代,而是由细胞内部的生物钟来决定。他将已经繁殖了10代的女性胚胎细胞和已经繁殖了30代的男性胚胎细胞混合在一起,发现在相同的培养条件下,女性胚胎细胞繁殖了40代,男性胚胎细胞只繁殖了20代,各自都是一共繁殖了50代。
科学家进一步研究,证明是DNA的端粒在每次复制时缩短一点而造成的,肿瘤细胞则不存在这个现象,因此能无限繁殖下去。
海弗利克并不想永生,他的愿望是在100岁生日那天死去,在此之前保持健康。他依旧健在,这个愿望能否实现,让我们等到2028年5月20日吧。
卡瑞尔的鸡心是怎么回事?
是因为他的技术员在用鸡胚提取液做培养液时,连带着加入了新的细胞,技术员们不敢告诉他,因为这会影响他的职业生涯,也会导致他们被解雇,就这样一种蒙混下去,直到被海弗利克的实验结果揭穿。
有人以这种形式永生
1951年初,住在美国马里兰州的30岁的黑人妇女海瑞塔·拉克斯(Henrietta Lacks)被诊断患宫颈癌,在约翰·霍普金斯医院接受治疗。
并不是因为约翰·霍普金斯医院是美国最好的医院,而是因为在种族隔离的年代,约翰·霍普金斯医院是本地唯一一家接收黑人的医院。
在治疗期间,未经患者同意,医生采取了两份样品,一份是她的正常宫颈细胞,另一方是她的宫颈癌细胞。
1951年8月8日,海瑞塔去世。
在约翰·霍普金斯做癌症研究的乔治·盖伊(George Gey)拿到样品,从宫颈癌样品中分离出一个细胞株,用患者的名字命名为海拉细胞(Hela Cell)。
Hela细胞繁殖能力极强,可以无限传代下去,给了科学家一个非常好的研究工具。1954年乔纳斯·索克(Jonas Salk)用海拉细胞研制成功脊髓灰质炎疫苗并大量生产。
Hela细胞的强大的繁殖能力到了后来成为一场科学灾难,因为发现很多很多的传代细胞株在实验室内被Hela细胞污染后,变成了Hela细胞,许多科学家认为他们分离和培养到的新的能无限传代的细胞株,其实是Hela细胞。我以前就遇到这种情况,辛辛苦苦分离的细胞株被Hela细胞污染了,前功尽弃。
海瑞塔·拉克斯以这种形式获得永生。
这种永生是你追求的吗?
天文学家是如何测量天体距离的
天文学测量天体的距离,根据这些天体离我们的距离有不同的方法,我们由近到远说!晴朗、黑暗的夜晚,当驻足仰望夜空时,你会发现天空中有各种各样的天体,从太阳系中离我们最近的行星邻居,到银河系中数十亿颗恒星,再到宇宙中延伸数百万光年的模糊星系。当你想问这些天体离我们有多远时,这正是天文学所要解决的最基本的问题。
我们先从离我们最近的天体,月球说起!以及太阳系天体距离的测量
在2000多年前的古希腊有个埃拉托色尼,这个人在当时就已经初步算出了地球的周长!现在我们已经准确的知道了地球的直径约为12700公里。通过地球的大小,而且我们还知道月球比太阳离我们更近,这一点没有啥怀疑的,通过以上的信息我们就可以计算出月球的大小和距离!
我们在天空中经常可以看到月偏食。
当发生月偏食的时候,地球的阴影就会投在月球上!现在知道了地球的大小,月球离地球的距离相对于地球离太阳的距离非常非常近,那么我们就知道地球在月球上的影子和地球的实际大小其实差不多。
这样就能算出月球和地球阴影的相对大小,也就知道了月球的大小。
上图为月偏食的一个合成图,可以很直观的看到月球相对地球的大小。通过地球投到月球上的阴影,我们就知道了月球的直径大约是地球的27%左右。以周天为360°,我们也能知道月亮在天空中占了大约半度(0.5°),这称为角直径或视直径,只要掌握一点几何知识,通过角直径和月球的物理直径,通过下图就能计算出月球离我们有多远。
测量月球的距离大小是一个完全不需要任何设备就可以完成的测量。有兴趣的可以试下。对于太阳系中的其他天体,我们可以非常精确的测量它们的大小,因为我们的探测器已经飞到了太阳系的边缘,沿途拜访了很多太阳系边缘的天体,并传回了大量的照片和数据。
虽然我们到达了太阳系的边缘,但我们从未离开过太阳系。就算旅行者号有幸达到了太阳系外的天体,也会因为耗尽能量和我们失去联系。可是我们也经常听说哪些恒星离我们多少光年,而且我们还可以精确测量它们离我们的距离。我们是怎样做到的?
测量附近恒星距离的办法
上图是天狼星,夜空中最亮的星星,也是离我们最近的星星之一。在望远镜发明之前,估计恒星距离的唯一方法是:假设这些恒星在本质上和我们的太阳一样,然后测量恒星相对于太阳的亮度,推断出这些恒星离太阳的距离有多远。
如果用这种方法测量天狼星的话,会得到一个大约半光年的答案,这和实际距离差了大约20倍。这种方法肯定不行,但我们发现了一个更好的办法。
我们之所以能看3D电影,这是因为我们的两只眼睛在空间中有不同位置!现在你试着伸出大拇指,然后交替眨眼,你会看到大拇指的位置相对于遥远的背景物体会发生很大的变化。这是因为左右眼睛看物体的角度不同。现在试着改变一下大拇指离眼睛的距离,然后再眨眼,你会发现物体越近,角度差就越大!
这种效应被称为视差。对于天空中的恒星来说,我们眼睛之间的距离有点不够用。但是每过六个月,由于地球的公转我们就得到了一个更长的基线!
通过观察附近恒星的位置在遥远恒星背景下发生的微小变化,我们就可以以非常高的精度测量附近恒星离我们的距离!
通过视差的方法我们能够非常好地测量离我们比较近的几十万颗,甚至几百万颗恒星的距离。因此我们利用以上比较原始的方法不仅能知道太阳系内天体的距离,而且还能知道太阳系外许多恒星的距离。
测量遥远星系距离的方法
上文也说了,视差这种办法对比较近的物体才能产生比较大的效果。
但是遥远的星系呢?就我们银河系中的绝大多数恒星来说,都因为太过遥远,无法利用视差来测量。那么,我们怎样测量天空中模糊的星系距离呢?
关键是我们必须找到一种方法,把可以测量视差的恒星与存在于遥远星系中的恒星联系起来!
100多年前,亨利埃塔·莱维特(Henrietta Leavitt)就为我们提供了一个解决方案。
在可用视差测量距离的星系中,有些恒星本身的亮度在不断的变化!在很长一段时间内,恒星的亮度在最大值和最小值之间波动。莱维特对2000多颗不同的恒星进行了分类,他注意到这些天体中最亮的恒星有一些显著的特征:天体的亮度与它的振荡周期有着密切的联系。我们称这种恒星为变星。
如果我们能测量这种类型的恒星(经典的造父变星)振荡的速度,我们就能知道它的内禀亮度。
然后再测量它实际上看起来有多量,我们就能算出恒星实际上离我们有多远。
这种方法正是1923年埃德温·哈勃首次确定星系距离的方法,直到今天我们还在使用!
这就是我们计算夜空中所有天体距离的方法,从太阳系内的天体到恒星、附近的星系,甚至更远的星系!
是什么原因导致造父变星的亮度有规律变化的
造父变星就像是宇宙中的灯塔,为我们指明了遥远星系的距离。下面我将通过历史(如何发现),科学(光周关系,有什么用)和物理(光度为何会变)三个方面回答这个问题。
历史——变星是如何被发现的
古时候,人们一直认为天上的星星是固定的光点。偶尔会出现像新星或超新星这样的灾难性事件,天空中会出现一个暂时变亮的天体,但这非常罕见,在人类历史上只有少数的那么几次有关超新星的记载。
虽然绝大多数恒星在天空中的位置和亮度似乎是不变的,但并非所有的恒星都是如此。1596年,大卫·法比利萨斯看到了一颗光度明显变亮的天体,他一开始认识是新星,因为他看到一个光点在8月的时候在天空中变亮,然后在10月底完全从视野中消失。但令他惊奇的是,1609年这个光点再次出现。大卫·法比利萨斯发现的根本不是一颗新星,而是鲸鱼座中的蒭藁增二(chú gǎo),距离地球418光年,第一颗本质上亮度可变的恒星!
变星原本被认为在天空中是极其罕见,因为人们花了近两个世纪才最终确定了10颗变星,但随着天体摄影技术的发展,人们发现的变星数量激增。
通过直接比较一颗变星在数天、数周、数月甚至数年期间的表观亮度,可以相当准确地测量其变化量和变化周期。
19世纪90年代初,一位名叫亨丽埃塔·莱维特(Henrietta Leavitt)的年轻女子加入了女子大学教育协会(Society for the Collegiate Instruction for Women),即现在的拉德克里夫学院(Radcliffe College)。1893年,她受聘于哈佛大学天文台,从天文台收集的摄影底片中测量和记录恒星的亮度。她对小麦哲伦星云中发现的恒星进行了分类,在接下来的20年里,她发现了超过1000个变星,并将它们分类为许多不同种类的变量恒星。
莱维特注意到有一个特殊类型的恒星(造父变星)显示出了很强的规律性。当莱维特观察了25颗最亮的造父变星时,发现这些比较量的变星完成一次变化周期需要很长的时间:到达最大亮度,变暗,然后再次回到最大亮度。
就视觉强度而言,所有恒星的亮度变化幅度大致相同,但平均亮度最高的恒星需要几个月的时间才能从亮到暗再到亮。莱维特发现:恒星的平均亮度降低,变化周期也会降低;一颗恒星越暗,其亮度变化就越快,最小的变化周期只有一天多一点。所以造父变星的平均亮度和变化周期之间存在明确的相关性。
这一关系在今天被称为周期-光度关系,这一发现带来了一些巨大的影响。下面就从科学的角度说这个问题。
科学——造父变星被用来做什么
莱维特的调查发现,这些变星都是距离我们相当远的恒星,大约199000光年,而包含这些恒星的星系,其物理尺寸只有7000光年左右。因此,我们就认为小麦哲伦星云中的所有恒星与地球的距离大致相同,恒星亮度的差异对应于这些恒星本身的亮度差异。
如果一颗恒星的周期和它的光度有关系,这意味着如果我们能测量造父变星的周期,我们就会知道这颗变星本质上有多亮。然后我们测量变星的表观亮度(看起来有多亮),根据亮度和距离之间的关系,我们就能算出这颗恒星实际上离我们有多远。
我们现在把这些变星称为标准烛光,因为如果你知道一个发光的物体本质上有多亮,然后你测量它的表观亮度,你就能知道它离你有多远。由于亨丽埃塔·莱维特(Henrietta Leavitt)对造父变星的研究,我们有了一根标准的蜡烛来测量整个宇宙的巨大距离,由于埃德温·哈勃(Edwin Hubble)在20世纪20年代对螺旋状星云中出现的变星的发现和测量,我们才能够理解这些遥远的星系究竟离我们有多远。
在大多数情况下,这些天体的易观测周期和它们的亮度之间存在着非常明确的相关性,这意味着如果我们在宇宙中任何地方发现并识别一个变星,我们就可以非常精确地知道它离我们有多远!就科学而言,这是宇宙距离阶梯中最重要的部分之一。
现在我们知道了变星是怎样被发现的,也知道了它是用来做什么的。接下来就了解下是什么 导致了变星的亮度会发生周期性变化的?
物理,是什么导致了变星的亮度会发生周期性的变化
第一时间我们可能会想到是不是恒星的核心出现了问题,因为核心中的核聚变是恒星发光发热的原因,或者光子传播到表面的速率在变化,导致了变星的周期性脉动。这非常不可能,因为一个典型的光子从核心产生并到达恒星表面的时间大约是10万年,在这段时间里一个光子会经历数万亿次的碰撞!事实上,所有已知类型的变星其核聚变的速率在很长一段时间内是保持不变的。但它们各不相同!
相反,这些恒星光度的可变性可以通过恒星最外层的活动来解释。
从物理学的角度来看,恒星的光球层(也就是光子永远离开恒星前的最后一个点)是一个非常特殊的地方。对于一颗完全稳定的恒星来说,光球层会随着时间保持完全稳定,这意味着将粒子推到表面的辐射压力会被引力完全抵消。太阳的光球层就是这样的近似值,但即使是像太阳这样稳定恒星也不是完美平衡的。
太阳的最外层也会经历对流,在光球层也会发生物质的升降。在这样的系统中,永远不会真正达到平衡,最外层会经历这样一个循环:
辐射压力太大,导致恒星膨胀,
- 当外层远离恒星中心时,引力下降,但辐射压力下降得更快,
- 这时引力对外层施加的力大于辐射压力对外层施加的力,
- 然后外层向内加速,导致恒星收缩,
- 当辐射压力上升到一定程度,又开始向外推,导致外层一直经历这样的重复循环!
对我们的太阳来说,随着时间的推移,光度的变化约为0.1%。
对于一个变星来说,它们的亮度和半径可能会发生巨大的变化,对于像蒭藁增二这样的恒星来说,它的固有亮度在一个周期内会变化约一千倍,而半径通常会变化数百万公里,温度也会变化数千度!
这就是造父变星的故事,它们是如何被发现的,被用来做什么,以及它们的光度为何会周期性变化。
细菌学和病毒学是怎样发展的
疫苗起源于中国 回顾人类走过的历程,我们发现面对疾病中最骇人听闻的瘟疫——急性传染病的时候,人类曾 经是那样的无助和无知。被感染上瘟疫的人,在死亡的威胁面前,只有等待命运的安排。在古代, 发烧或者拉肚子就是死亡的第一征兆,面对这些突如其来的疾病、随处可见的死亡,无计可施的人 们开始把自己锁在家里,或弃城而走。在欧洲,面对黑死病也就是鼠疫的威胁,成千上万的民众逃 离城市,甚至于整个欧洲禁浴 200 年。 古代的统治者、政客和巫师往往会利用人们对瘟疫的恐惧加强和巩固他们的统治。但是随着科 技的进步和发展,人类终于找到了能够遏制住瘟疫的武器——疫苗。疫苗给人类带来的价值不可估 量,通过疫苗,人类历史上第一次消灭了一种疾病,就是天花。疫苗给我们的第二个价值就是降低 医疗开支。美国的一项成本收益分析显示,在疫苗上每投资 1 美元可节约 2 美元至 27 美元的医疗支 出。 疫苗最早起源于中国,中国古代人民在与疾病斗争的长期过程中,观察到有些患过传染病而康 复的人,一般不再患同样的疾病。于是他们用物理方法(如捣碎、研磨)处理发病个体的组织脏器 制成最原始的疫苗,这种疫苗虽然可能发生全身性副作用,存在散毒和造成新疫源的危险,但是在 治疗和预防传染病方面起到了重要的作用。 早在公元 4 世纪初,我国东晋葛洪所著《肘后方》中,就有关于防治狂犬病的记载,其中“治卒 有猘犬凡所咬毒方”有云:“仍杀所咬犬,取脑傅之,后不复发。”杀掉咬人的狂犬,以其脑浆敷于被 咬处,体现了“以毒攻毒”的思维方式。 天花因“种痘”被灭绝 在这种思维方式的指导下,我们的祖先发明了人痘接种术来对抗天花病毒的侵袭。据传, 11 世 纪中国就有接种人痘获得成功的例子,17 世纪逐渐普及。1727 年俞茂鲲《痘科金镜赋集解》中写到, “闻种痘法起于明朝隆庆年间(1567-1572 年),宁国府太平县,姓氏失考,得之异人丹家之传,由 此蔓延天下。至今种花者,宁国人居多,近日溧阳人窃而为之者亦不少。当日异传之家,今日尚留 苗种,必须三金,方得一丹苗,买苗后一家因以获利。” 早期人痘接种,使用的都是人身上自然发出的天花的痂,人们把它叫“时苗”。由于“时苗”的毒 性很大,不能百分之百保证被接种者的生命安全,“苗顺者十无一死,苗凶者十只八存”。因此,后 来人又发明了“熟苗”接种之法。所谓“熟苗”指的是通过接种发出来的痘作为种苗,经过“养苗”、“选 炼”,要连续种七代过后,这个种苗就非常精纯,火毒就汰尽了,用经过七代接种的种苗来给健康人 种就非常安全了。《种痘新书》记载:“种痘者八九千人,其莫救者二三十耳”。法国哲学家伏尔泰 这样高度赞扬人痘接种:“我听说 100 年来,中国人一直就有这样的习惯;这是被认为全世界最聪明、 最讲礼貌的一个民族的伟大先例和榜样。” 18 世纪初,预防天花的人痘接种法被引入欧洲。英国医生爱德华· 詹纳注意到,乡村里的牛患了 与天花相似的病,那些挤奶女工在接触到牛身上的疱疹时受到感染,身上也会长出小一些的疱疹, 这就是牛痘。而感染过牛痘的人都不曾被传染上天花。詹纳发现,牛痘的病情症状比天花轻得多, 它从不令牛死亡,更不会令人死亡,况且人在感染牛痘痊愈后不会留下任何疤痕。 1796 年 5 月 14 日,詹纳找来了一位患牛痘的挤奶女工,从她手指的疱疹中提取出一些液体,然 后将一位 8 岁男孩的手臂用手术刀划破,把牛痘疱疹液滴在了上面。48 天后,詹纳将从天花患者脓 疱中提取的液体再一次滴在了这个男孩被手术刀划破的手臂上,男孩的免疫系统抵抗住了天花病毒 的侵害。由于牛痘比人痘更安全、简便,牛痘接种术逐渐取代了人痘接种术。随着科学技术的进步, 牛痘疫苗的制造技术不断改进,甚至在世界范围内广泛开展了免疫接种。1980 年,天花在地球上灭 绝,这是人类唯一消灭的传染病。 血清疗法创始人获诺奖 被称为“微生物学之父”的法国人路易· 巴斯德,在 1881 年改进了减轻病原微生物毒力的方法。他 观察到患过某种传染病并得到痊愈的动物,以后对该病有免疫力,据此用减毒的炭疽、鸡霍乱病原 菌分别免疫绵羊和鸡,获得成功。这个方法大大激发了科学家的热情,人们从此知道利用这种方法 可以免除许多传染病。 1882 年,巴斯德开始研究狂犬病,他证明了病原体存在于患兽唾液及神经系统中,并制成病毒 活疫苗,成功地帮助人获得了该病的免疫力。按照巴斯德免疫法,医学科学家们创造了防止若干种 危险病的疫苗,成功地免除了多种疾病的威胁。 作为获得诺贝尔奖的第一位医学家,埃米尔· 冯· 贝林根据实验结果提出了“抗毒素免疫”的新概 念,经过 300 多次试验,终于证明,曾经感染过破伤风杆菌而依然存活的动物的血清,注射给刚感 染破伤风杆菌的动物,可以预防破伤风病症的发作。 这一事
实说明,耐受过破伤风的动物血清中有着对抗破伤风毒素的抗毒素,它能中和毒素,使 之失效,这在医学上称为“抗毒素的被动免疫”。为此,年轻的贝林被誉为免疫学尤其是血清疗法的 创始人。 1891 年 12 月的一天,贝林在柏里格医院进行了第一次尝试。他把自制的白喉抗毒素血清,缓缓 地注射给一位因患白喉急症而奄奄一息的病儿。病儿那颗被白喉毒素麻痹的心脏,跳动由弱变强, 呆滞的眼睛又重新闪出生命的光辉!白喉抗毒素不久就在药房里大量出售,它挽救了成千上万个病 儿。从此血清疗法成为征服白喉的一种普遍有效的手段,该病的死亡率由当时的 48%降到了 13%。 小儿麻痹疫苗研制者率先接种 肺结核曾经被认为是无法医治的绝症,在无法治愈的年代,为了减轻病人肺部的压力,甚至需 要将人的肋骨生生地摘除。19 世纪,德国“细菌学之父”赫德经过 272 次实验,成功地培养出了导致 结核病的微生物。随后,为了对付这种微生物,法国科学家卡尔梅特和介朗整整研究了 15 年,一种 含有稀薄活性肺结核细菌菌株的疫苗——“卡介苗”终于在 1921 年问世。到 1961 年介朗去世时,全 世界已有两亿多人注射了这种抵抗肺结核病的疫苗。 小儿麻痹症,医学界称之为脊髓灰质炎,是威胁儿童生命和健康的瘟疫。其发病高峰期,美国 以及欧洲和亚洲都有近 10 万人发病。 美国历史上最著名的总统之一富兰克林· 罗斯福,是美国历史上 唯一一位连任四届的总统,也是唯一一位残疾人总统,而他残疾的原因正是因为小儿麻痹。 美国索尔克医生用了近 9 年的时间,于 1955 年成功地研制出灭过菌的脊髓灰质炎疫苗。索尔克 医生让自己成为第一个接受疫苗接种的人。他说:“我把这看作是一种典礼和象征。”紧接着,全世 界几百万的儿童开始排队等候注射预防小儿麻痹症的“索尔克氏疫苗”。 随着科技的进步,我们有理由相信,终有一天会出现可以预防癌症、艾滋病等不治之症的疫苗。 尽管这些疫苗的研制不可能是一帆风顺,但研制的过程给人们带来了希望,因为人类几千年来就是 这样通过科学研究,一步步实现自己的梦想,用疫苗筑起了隔离病毒的“防火墙”。 然而,巴斯德和巴斯德之前的研究人员们并不清楚病毒的性质。1892年,俄罗斯生物学家德米特里·伊万诺夫斯基使用张伯伦滤菌器试图分离出引起烟草花叶病。他的实验表明,从受感染的烟草植物中提取的碎叶提取物经过滤后仍然具有传染性。伊万诺夫斯基报告了一个微小的传染因子毒素,能够通过过滤器,可能是由细菌产生的。
1898年马丁斯·贝耶林克伊万诺夫斯基重复了他的工作,但更进一步,把“过滤剂”从一株植物传递到另一株植物,发现这种作用没有减弱,并得出结论,它具有传染性——在宿主中复制——因此不仅仅是毒素。他叫它活菌污染。1963年乙型肝炎病毒是由...发现的巴鲁克布隆伯格世卫组织继续开发乙型肝炎疫苗。在1965年,霍华德·特明描述了第一个逆转录酶病毒RNA基因组为反向转录转化为互补DNA ( cDNA ),然后整合到宿主基因组中并从模板中表达。病毒酶反转录酶,它与整合酶是逆转录病毒的一个显著特征,1970年由Howard Temin和大卫巴尔的摩。首例逆转录病毒感染人类由...鉴定罗伯特·加洛1974年。后来发现逆转录酶对逆转录病毒不是特异性的;逆转转座子这些编码逆转录酶的基因在所有真核生物的基因组中都很丰富。人类基因组中约有10 - 40 %来自这些反转座子。1975年,瘤病毒的功能得到了很大的澄清。在此之前,人们认为这些病毒携带着某些被称为癌基因当被插入宿主基因组时,会导致癌症。迈克尔毕肖普和哈罗德·瓦尔穆斯显示肿瘤的癌基因劳斯肉瘤病毒实际上并不是病毒特有的,而是包含在许多物种的健康动物的基因组中。肿瘤病毒可以开启这种预先存在的良性原癌基因,使其成为真正的致癌基因。1976年,有记录以来第一次爆发埃博拉病毒病这是一种高度致命的病毒传播疾病。一九七七年,弗雷德里克桑格实现了第一个完整的排序基因组噬菌体φx174。同年,理查德罗伯茨和菲利普夏普独立显示的基因腺病毒包含内含子因此需要基因剪接。后来发现,真核生物的几乎所有基因都有内含子。由联合国领导的全球疫苗接种运动世界卫生组织导致根除天花19
79年。一九八二年,斯坦利·普鲁辛纳发现朊病毒并显示他们造成痒病。第一个案例爱滋病是1981年报道的艾滋病毒1983年,由吕克·蒙塔尼耶是,弗朗索瓦·巴雷-西努西和罗伯特·加洛。一内源性逆转录病毒( ERV )是一种逆转录病毒,其基因组已被永久整合到某些生物体的生殖系基因组中,并因此随该生物体的每次繁殖而复制。据估计,大约百分之九的人类基因组起源于ERVs。2015年显示,来自ERV的蛋白质在3天大的人类胚胎中积极表达,似乎在胚胎发育和保护胚胎免受其他病毒感染方面发挥作用。
特别声明
本文仅代表作者观点,不代表本站立场,本站仅提供信息存储服务。