《周福宝教授:矿井智能通风理论与技术研究进展》_通风_矿井_智能

《周福宝教授:矿井智能通风理论与技术研究进展》

©煤炭科学技术2023年第1期

矿井智能通风理论与技术研究进展

周福宝1,2 ,辛海会2 ,魏连江2 ,时国庆2 ,夏同强2

摘 要

矿井智能通风是我国矿山智能化建设的安全保障。为实现矿井通风智能化,基于“平战结合” 原则提出了井下通风人−机−环综合信息流智能感知与交互控制的理念。并从矿井智能通风理论及架构、矿井智能通风精准监测预警、矿井通风网络实时解算、矿井通风故障诊断与智能决策等4个方面论述了矿井智能通风系统平台架构,通风参数精准监测新型传感器研制与布置策略优化,通风参数信息流处理方法,风网解算方法,矿井气候与通风网络耦合解算,风网解算响应与控风决策,矿井通风故障源和故障原因诊断,智能通风灾变决策关键模型等基础理论与核心技术研究进展;同时 提出了全断面风量直测新方法,消除井巷断面风速分布不均导致的点风速测风误差;发展了热湿耦合的风阻自适应调节风网实时解算模型,提高了风网实时解算精度与智能通风日常运行的稳定性;建立了 基于全尺寸灾变试验数据的场−区−网耦合数值解算方法,构建了煤与瓦斯突出、火灾与瓦斯爆炸的灾变演化模型,突破了矿井智能通风系统的灾变自主决策与控制的方法瓶颈;结合矿井智能 通风实施案例,详细阐述了矿井智能通风在精准测风、通风设施与装备联动控制、智能防火防尘等 方面的现场实施与运行过程,指出了矿井智能通风建设存在的问题与发展趋势。

关键词:矿井智能通风;风网实时解算;精准监测预警;通风故障诊断;灾变耦合解算模型

01基金项目

02作者简介

周福宝(1976—),男,江苏南京人,教授,博士。E-mail:f.zhou@cumt.edu.cn

引言

矿井智能通风是矿山智能化建设的基石,是保障我国煤炭工业转型升级和高质量发展的核心技术 之一。党的二十大报告为矿山指明了高端化、智能 化、绿色化的高质量发展方向,八部委联合发布的 《关于加快煤矿智能化发展的指导意见》为矿山通风智能发展提出了明确要求[ 1]。截至 2022 年底,在全国智能化矿井验收核查中,已初步建成智能通风系统矿井达 500 余座。通风是安全的保障,矿井智能通风建设要基于“平战结合”理念[ 2] ,既满足日常通风的自动化管理与维护,又实现灾变时期的应急控 风,有效抑制灾情演化[ 3]。因此,矿井智能通风应是对矿内空气参数、通风设施装备状态与控制参数、人 员信息参数、灾害信息参数等综合信息流的智能感知与风险预警、智能决策与控制,是以通风安全多系统信息互通互联的物联网为核心,以减人、增安、提效和提高井下人员的幸福感与获得感为目标的智能安全与健康保障信息系统。矿井智能通风建设要实现通风信息智能化与灾害精准预警、矿井安全避险六大系统综合信息集成与智能运维的多系统融合互联、主动交互、协同联控和智能决策的发展目标,并基于矿山智能化建设的需求,形成 风险评估、监测预警、安全保障、应急管控“4 个中心”的一体化智能通风管控平台,一个传输网络、一个库 (数据库)、统 一数据接口标准[ 4]、统一服务器资源、统一展示界面 和综合信息一张图的矿山智能通风建设路径。

展开全文

近年来,国内外学者对矿井智能通风理论与关键技术进行了大量研究,在 风网实时解算和 智能决策核心算法上取得了突破,在智能通风综合信息平台方面实现了国内自主知识产权化,推动了我国矿 井通风智能化的进一步发展,笔者通过对矿井智能 通风理论及架构发展、矿井智能通风精准监测预警关键技术、矿井通风网络实时解算关键技术发展、矿井通风故障诊断与智能决策、矿井智能通风实施案例及发展趋势 5 个方面的分析与总结,指出了目前矿井智能通风的发展现状与趋势。

1 矿井智能通风理论及架构发展

矿井通风是保障矿井安全生产的最主要的技术 手段之一,在矿井生产过程中,必须源源不断地将地 面新鲜空气输送到井下各作业地点,以供给工作人 员呼吸,并稀释和排除井下各种有毒、有害的气体和 矿尘。实现矿井通风智能化是实现智能开采、建设 智慧矿山的主要技术保障。通风智能化不仅涉及到 空间科学、采矿技术和流体力学理论,更需要数学、 自动化、计算机和信息科学的底层支持,研究矿井智 能通风理论和技术是实现矿井安全智能化的基础 保障。

1.1 矿井智能通风理论

矿井通风系统经历了由机械通风到局部智能通 风再到全局智能通风的 3 个阶段。1973 年,“国际煤 矿安全会议”在捷克卡路维-费里照例举行,会议 系统地提出了有关矿井机械通风的若干问题及解决 方法,但是传统的机械式通风局限于人工、半人工的 方式,具有风机效率低、自动化水平低的缺点[ 5] ;随 着计算机及自动化的发展,中国矿业大学梁涛[ 6] 设 计了一种采用脉动通风技术与变频调速技术相结合 的掘进面智能通风控制系统,该系统能够对瓦斯体 积分数传感器采集的瓦斯体积分数信号进行分析判 定,实时控制掘进面局部通风机的转速,从而实现对 掘进面通风的局部智能控制;近年来,基于“互联网+” 和现代矿山物联网技术,卢新明[ 4] 提出了矿井通风 智能化理论与技术;笔者团队[ 2] 系统研究了矿井智 能通风原理、关键技术及其系统组成,明确阐述了矿井智能通风的定义与内涵。 全局智能通风的发展为 贯彻落实“十四五”发展计划,全面建成自动化和无人化的全局矿井智能通风系统奠定了理论基础。

1.2 矿井智能通风架构

随着人工智能技术近年来的飞速发展,为矿井 通风问题的研究开辟了新的途径,数字化、智能化是 矿井通风工程安全、高效发展的方向。矿井通风信 息化研究可追溯至 20 世纪 50 年代,Scott 以及 Hinsley 两位学者将计算机技术应用于矿井通风问题的 研究,20 世纪 70 年代宾夕法尼亚州立大学的 Stefanko和 Ramani 两位专家[ 7] 针对矿井通风网络提出的一 系列的数学公式,又为矿井通风信息化发展做出了 很大贡献。之后,矿井通风的软件研究得到了极大 发展,至 20 世纪末,国外较具代表性的模拟软件已 达 8 种,国内通风软件的设计兴起于从 20 世纪 90 年代,诸多学者[ 8] 从不同角度出发设计了不同架构 的矿井通风系统。

矿井智能通风成果之前多集中在智能化系统的 组成、通风参数采集、风网解算与调控等局部方面, 单点式的成果较多,整体性研究还处于起步阶段。同时在感知、决策与应急处置等方面智能化研究中存在技术难点,需加紧突破,以期实现通风基础参数智能感知、通风网络调控智能决策、通风灾变应急控 制为一体的智能通风架构体系。

在现有矿井智能通风架构体系下,笔者所带领 的矿井智能通风研究团队,在国家重点研发计划项 目“矿井灾变通风智能决策与应急控制关键技术研究”的支持下,提出了矿井智能通风人−机−环一体的 综合信息流建设架构,如 图 2 所示。

2 矿井智能通风精准检测预警关键技术

矿井通风参数精准监测是实现实时网络解算、 按需供风、异常预警、应急决策、灾变调控等系统功 能的动态信息流,为矿井智能通风系统的安全可靠 运行提供根本保障。近年来国内外学者积极攻克通 风参数的精准监测难题,提出了通风参数感知和多 参数优化配置的新方法,建立了通风状态预警分析 模型,形成了系列技术装备和成套监测预警技术,为 通风智能化建设奠定了感知基础。

2.1 矿井通风参数实时精准测定

矿井通风参数作为智能通风系统中的基础性数 据,其实时感知与精准测定是通风网络解算、通风状态分析、异常或灾变智能决策的关键,通过即时精确测量的通风参数可以实现对通风阻力测定、风机性能、风流变化规律等环节的日常监测与管理,通风参 数包括风速、风量、温度、风压、瓦斯体积分数、一 氧化碳浓度、其他有害气体浓度等。但是在井下实 际测量时,经常因为风流的湍流性、巷道断面风速不均一、高温高湿浓尘环境以及传感器适用性问题等 制约性因素,难以反映真实数据而导致监测数据可靠性较低,为有效解决以上难题,实现智能通风参数 实时精准监测的目的,主要从 新型传感器研制与 布置策略优化和通风参数数据处理两方面进一步开展研究。

2.1.1 新型传感器研制与测风方案的优化

基于井下布置的传感器获取相关通风参数是矿 井智能通风系统安全运行的保证,但是当传感器测 量精度不符合要求、布置方式不合理等导致的产生 误差较大时,不仅不能获取真实数据,反而影响对全矿井通风阻力的测定以及日常通风管理工作。风速、 风压作为保证矿井智能通风系统按需供风、智能调 控的关键参数,其精准测量对实现矿井通风网络实 时解算、通风异常监测预警、灾变风流应急调控等方面起到重要作用。

以测量风速为例,目前相关学者在超声波传感 器测量风速的研究较多。笔者等[ 2] 采用超声波时差 法,通过大跨度双向设置超声波接收与发射端,辅以 时间数字转换芯片 (TDC) 精确计时技术和解耦算法, 研发了线段风速高精度传感器,实现了全量程测量 精度小于 0.1 m/s。蔡峰等[ 16] 通过研究超声波在煤 尘–空气混合物中的传播和衰减特性,为研发新型煤 矿井下超声波风速传感器提供了必要的试验基础。李秉芮等[ 17] 基于超声波时差法风速测量原理,设计 了一种具有低启动风速的高精度矿用超声波风速测 量仪,该风速测量仪的分辨率为 0.01 m/s,测量误差 为±0.1 m/s,启动风速低于 0.1 m/s,可以满足矿井低 风速巷道的精准测风要求。

然而,在矿井巷道测风时还需要考虑到传感器 的布置策略和测风方式,例如仅将风速传感器简单 布置在巷道一侧,就可能导致测量的风速与实际风 速产生较大的误差,非常不利于通风网络解算和相 关调控决策的制定。为此,邵良杉等[ 18] 通过模拟试 验确定平均风速的位置,在平均风速相等的位置安 装风速传感器最为准确,对于支护类型一样的巷道, 即时在不同风速的情况下也几乎没影响。李作泉等[ 19] 提出的精准测风系统改变以点带面的测风方式,传 感器通过 2 个超声波探头对风速进行测量计算,得 出具体巷道中线风速来代表整个巷道的平均风速, 极大地提高了巷道风速测量的准确性和实时性。倪 景峰等[ 20] 提出 1 种嵌入式风速传感器优化布置方法 与智能故障诊断系统,模拟试验表明可解决风速传 感器布置与故障诊断模型不匹配的问题,提高模型 故障诊断准确率,提高煤矿智能化水平。宋涛等[ 21] 提出了一种基于超声波全断面测风的矿井风网实时 解算方法,利用超声波在两点间顺风、逆风传播的时 间差实现巷道全断面测风,风速测定结果与声速无关,不受声速、温湿度和气压等参数影响,而且避免了传统风速传感器的风道易受矿尘堵塞的难题,测 风装置的分辨率达 0.03 m/s。

2.1.2 通风参数数据处理方法的改进

在对通风参数的数据处理方面,通过改进相关 算法,处理异常数据优化监测数据,分析风速风量风 压之间的规律,用于通风系统网络解算、异常判断和 通风系统优化等。黄旭[ 15] 基于信息熵理论对风速传 感器进行了选址,并推导出纵向中线上平均风速等 值点位置,风速传感器选址的条件依次为“风流扰 动>巷道支护>与入 (回、用) 风口距离>巷道类型”;并结合使用 FCM-Rloss 或 FCM-SG 算法可对过程变量和状态变量引起的风速异常数据进行有效处理。范远洋[ 22] 建立了通风数据分析与预测模型,利用矿 井通风领域中广泛使用的通风效果评价与时间序列 预测模型对这些数据进行 2 次处理,得到的结果为 煤矿企业的管理人员提供了更有价值的决策信息。蒋成龙[ 23] 通过灵敏度算法和聚类算法对矿井通风系 统进行风速和风压参数的监测优化,提出了反映分支风量变化与相关分支风阻之间关系的通风网络巷 道风量风压变化规律,建立相应的数学模型。

2.2 矿井通风监测预警系统实践

在通风系统的监测环节,由于不可控因素导致 的时刻变化的数据,如风流湍流扰动、瓦斯监测数据 变化等,需要建设智能通风感知的实时监测预警系 统,实现对风速 (风量)、瓦斯体积分数等通风参数的 在线分析和动态预警,形成通风监测数据的科学分 析体系,提高通风异常的智能研判能力。李敏等[ 24] 将矿井通风管理信息系统可纳入监测系统数据库, 从而对整个矿井的通风系统进行仿真,实现通风监 测数据与仿真一体化运行,提高煤矿安全预测预警 水平。张婧[ 25] 提出了多源数据融合的矿井通风瓦斯 灾害预警平台,通过多个传感器对瓦斯涌出量、温度 和风速等数据进行采集,结果表明提高了矿井通风 瓦斯灾害预警正确率,并且矿井通风瓦斯灾害预警 结果更加可靠。王振平等[ 26] 将通风与瓦斯异常有机 融合,根据现有的风速、风量、温湿度、甲烷、氧气、 一氧化碳、压差等环境监测传感器数据,研究重点场 所区域内气流场计算与预警算法,实现矿井通风瓦 斯智能分析预警与管理。齐俊铭等[ 27] 在转龙湾煤矿 进行应用实践, 通过优化传感器布置,提出了通风网 络关键参数精准感知技术,研发了矿井智能通防和 应急管控平台,运用机器学习深度挖掘通防系统前兆异常状态特征,实现在线监测与超前预警。

虽然相关文献对新型传感器、测风方式、监测预 警系统已进行了大量试验和效果验证,但是想要解 决矿井智能通风的“卡脖子”问题,关键依旧在于通 风参数的实时精准测定技术。突破高精度、高适用 周期的测风传感器原理研究,开发全量程风速风压 传感器、实现低风速巷道区域测量;利用风速、风压、 温度、瓦斯、粉尘、其他有害气体浓度传感器以及优 化改进通风数据处理算法,实现各巷道风速、风量、 通风阻力等在线监测与实时通风网络解算,形成风 网实时解算与传感器测定数据高度同步的新局面;解决复杂流场耦合作用下测风传感器优化布置与通 风数据降噪处理、风量超前预测、通风异常预警等难题,仍然是未来矿井智能通风系统精准监测关键技术持续改进的发展方向。

2.3 井巷全断面风量直测方法

高精度风速传感器的发展为风速精准监测提供 了技术支撑,风速测定的主要目的是计算井巷风量, 由于全断面风量分布的不均匀性,在平均风速计算 方面存在一定误差。井下巷道断面参差不齐,导致 产生速压差的巷道较多,基于此,笔者团队提出了井 巷全断面风量直测方法,通过差压监测的高风速区 段风量直测方法,消除井巷断面风速分布不均导致 的点风速测风误差。 图 3 为井巷风量直测的计算原理。

3 矿井通风网络实时解算关键技术发展

通风网络解算是智能通风与控制的底层核心技 术。根据《煤矿智能化建设指南 (2021 年版)》和《智 能化示范煤矿验收管理办法 (试行)》中关于智能通 风与安全监控的建设标准,要求矿井具备通风网络 动态解算功能,能对监测数据进行实时准确分析,同 时具有通风系统故障诊断及灾害预测、预警能力。

近年来,国内外学者从风网的拓扑结构和状态 方程入手,已对自然分风、按需供风计算和风阻调节 等理论难题进行了深入探索,并将已发展的风网解 算方法广泛应用于按需调风优化、均压、联合调节、 在线闭环调控、测风优化布置、通风状态超前预测、 通风系统故障诊断、通风设施调控等智能通风领域, 为智能通风理论的突破提供了科学依据与可行方法。

3.1 通风网络解算方法的发展

矿井通风网络解算方法主要有物理模拟法、图 解法、数学解析法。目前,计算机技术发展使得数学 解析法和图解法更具优势,数学解析方法主要是构 建通风系统函数关系式实现风网解算,图解法在展 示计算结果方面有简单明了的优势。矿井通风网络解算程序逐渐成为矿井风网解算的主要手段。

目 前 可 追 溯 到 的 网 络 解 算 方 法是 1936 年的Cross 算法,是一种水网逐次解算方法 [ 28]。之后逐步 发展了风网路迭代试算法[ 29] ,“京大第 1 试算法”和 “京大第 2 试算法” [ 30]。1967 年,立体通风网络解算 程序的提出,标志着通风网络解算进入新阶段。在 此 基 础 上,Bandyopadhyay L K.等[ 31] 建 立 了“ESVENT”知识系统,用于辅助矿井安全工作人员做出 决策;Dziurzynski W 等[ 32] 首次引入了空气动力阻力 与密度变化的关系,为矿井热湿风网耦合解算方法 的发展奠定了基础;之后,Lowndes I S[ 33] 和 Nyaaba W [ 34] 均在矿井网络解算优化方面取得了进步,先后 将遗传算法和新的 FOL 算法应用于矿井网络解算优 化中,有效提高了通风系统网络解算效率与准确性。我国于 1973 年完成了第 1 个矿井通风网络解算程 序,1984 年初步实现了多风机通风网络解算程序 [ 35]。20 世纪 90 年代王德明等[ 36]、钟德云等[ 37] 开发通风 解算程序获得了广泛应用,解决了复杂网络调试反 风余单向回路复杂快速收敛的问题。王树刚等[ 38- 39]、 魏连江等[ 40]、谢贤平等[ 41] 学者进一步深化了矿井通 风网络拓扑理论,提出了真假拓扑网络的概念,建立了通路树深度优先生长法与模糊优化数学模型。

3.2 矿井气候与通风网络耦合解算

当前,我国矿井深部开采趋于常态化,通风系统 日益复杂,矿井气候条件如自然风压、温湿度变化等 对于井巷通风状态的影响不容忽视。传统通风网络 解算方法未全面考虑矿井气候特征,无法实时准确 分析监测数据,不具备灾变风流如积聚瓦斯、火灾烟 气等状态参数的预测与预警功能,不能满足智能通 风建设的迫切需求。为此,需要研究矿井气候及灾 变条件下通风网络状态参数的热流质耦合解算方法, 从理论上提升通风网络定量分析的本质精度及可靠 性。 矿井气候与通风网络耦合算法是当前的重点研究方向之一。

美国研究人员 Carne. J. B.[ 42] 最早研究了通风网 络中封闭室内的自然风压变化,后续研究者 Koch. H 与 T. J. Kim 等[ 43- 44] 对于室内自然风压的性质进一 步研究分析,系统阐述了自然风压的变化规律。我 国矿井自然风压的研究起源于 20 世纪 70 年代,之 后对矿井自然风压的产生原理与变化规律做了系统性的研 究[ 45- 46]。胡明松等[ 47] 黄启铭等[ 48] 等建立了自然风 压对于通风网络影响的数学模型,定量分析了矿井 自然风压、风量及分支风阻间的关系,为后面矿井通 风网络分析与调节提供理论依据;高建良等[ 49- 51] 对 巷道风流温度及湿度计算方法进行研究,考虑井下 气候条件对通风系统的影响情况,为矿井气候与网络解算算法的结合打下基础;杜翠凤等[ 52]、李宗翔 等[ 53] 在矿井通风网络解算中引入了矿井空气热湿参 数,引入了巷道风流换热模型,为矿井气候预测提供 了计算基础;马恒等[ 54]、牛国庆等[ 55] 进一步研究了 矿井热环境对风网阻力计算的影响,完善了以热力 学为基础的通风网络解算模型,为矿井通风网络的 实时解算提供了基础[ 56]。在此基础上,笔者团队[ 57] 根据风流与井巷围岩之间不稳定对流换热、井巷围 岩氧化放热和热水沟散热等模型,结合节点风量平 衡方程、回路风压平衡方程和多股风流混合的热湿 平衡方程,提出基于空气状态参数与风量耦合迭代 的通风网络风量调控决策的方法,这一算法为通风 网络实时解算和风量调控决策提供了一种技术手段。此外,在通风网络解算收敛性研究方面,卢新明、张 建中等[ 58– 60] 对线性和非线性逼近迭代方法进行了优 化,提出了提高总体收敛性和超线性敛速的凸规划解方法。

3.3 风网解算响应与控风决策

当前,矿井通风难度与系统复杂性在各种因素 的影响下激增,鉴于矿井通风系统在矿井生产过程 中的重要作用,迫切需要深入研究矿井通风系统并 解决相应的通风难题。通风网络状态随各种因素动 态变化,而通风网络的异常变动或主动调控会对矿 井用风地点造成直接影响,可能产生安全生产隐患, 因此实时解算通风网络对于矿井风量调节和消除矿 井灾变风险具有重大意义。魏引尚、宫良伟等[ 61– 64] 将在通风网络解算中嵌入采空区流场计算,提出了 有限管耦合方法 (FTM),得到了实时漏风下的通风 网络特性。

自然分配风量通常达不到矿井用风地点的需风 量,而且在矿井大气年周期性变化下,井下不同时期 的风量分配都会有所不同。为满足用风地点的用风 要求,降低用风地点受矿井气候环境变化的影响,需 要对于矿井风量进行优化调节。矿井风量调节方法 较多,对于局部通风网络调节可使用常用的增阻调 节方法[ 65] ,调节分支风量。为实现对分支风量的调 控,引入风网灵敏度分析理论,矿井通风系统的灵敏 度是矿井风量分配随各分支风道风阻参数变化后的 反应灵敏程度,即风量参数的变化率。将通风网络 中的节点风量平衡和回路风压平衡定律公式对分支 风阻偏导[ 66] ,即可建立分支灵敏度偏微分方程组,由 此求得风网灵敏度矩阵。已证明风网灵敏度只与通 风系统状态有关,即矿井通风系统在某一时期,其风 网灵敏度是惟一且确定的[ 67] ,对于矿井气候影响下 的通风网络解算模型同样符合。研究结果发现对于 同一分支在增阻调节初期,阻力变化幅度对于用风 地点的影响较大,随着阻力的增大,这种调控手段收 效越来越不明显。 因此,风网灵敏度模型及其分析 是最优调节分支选择及定量控风决策有效性和准确性的有力保障。

4 矿井通风故障诊断与智能决策

4.1 矿井通风故障诊断

矿井通风系统故障的快速准确诊断是保证通风 系统智能化的稳定运行,也是实现风流智能调控的 关键。矿井通风故障诊断主要是利用矿井通风系统 监测数据及矿井通风可视化仿真、神经网络技术综 合分析通风动力、通风网络、通风设施等方面故障。其中,主要涉及的问题至少包括: 故障源和故障原因诊断、传感器的优化布置、故障诊断方法问题。

4.1.1 矿井通风故障源和故障原因诊断

4.1.2 传感器的优化布置

矿井通风系统故障诊断,需要大量实时数据,为提高诊断效果、降低成本和维护工作量,通风参数传 感器的优化布置研究至关重要。井下传感器主要包含风速、风压等传感器,各传感器实时获取井下各地 点通风参数,实时反馈于通风诊断系统。井下传感 器数量太少,不能够有效诊断通风系统故障,而传感 器数量偏多,投资成本又过高,且维护工作量大。因 此,如何合理地设置传感器的数量和位置,以达到充 分有效利用监测数据,实现科学的、实时的监测监控, 这是矿井通风系统故障诊断研究需要解决的问题之 一。目前,在传感器优化布置方面的研究比较多。倪景峰等[ 20] 提出基于决策树的矿井通风故障源分类 判断、故障量回归预测及嵌入式风速传感器优化布 置一体化方法,解决风速传感器优化布置与诊断模 型不匹配的问题。李雨成等[ 72] 提出基于角联子网的 风量反演风阻病态改良算法与基于贪心策略的风压 传感器优化布置算法,给出了算法步骤及程序框图, 能够解决风量反演风阻算法的病态问题,实现布点 合理、数量较少的风压传感器的优化布置,刘剑 等[ 73] 根据巷道风量对故障位置及故障量的重要度, 得到的约简分支即为应当安设传感器的最优位置。目前,从不同角度对传感器的优化布置进行了大量研究,取得较好效果。

传感器布置点的合理与否,会对故障诊断结果产生重要影响,合理的传感器优化布置,可以减少监 测信息的冗余,同时,也会降低设备的维护和管理等 方面问题。 目前,风速、风量传感器的优化布置研究基本可以满足矿井通风系统故障诊断的需要。

4.1.3 故障诊断方法

4.2 智能通风决策关键技术

4.3 矿井风网灾变耦合解算模型

目前在矿井风网实时解算方法方面已取得了突 破,尤其是笔者团队提出的热湿耦合变风量风阻自 适应解算模型,大幅提高了风网解算效率与准确度。但在矿井灾变时的风网灾变耦合解算模型上一直未 有较大突破。笔者团队在重点研发计划支撑下,提 出了全尺寸巷道灾变试验为基础的灾变源场–区-网 耦合解算方法。基于 30 余次全尺寸巷道火灾试验, 建立了火灾风烟流温度演化理论模型 (式 (1)),为灾 变风网实时解算提供了依据;基于国内外全尺寸巷 道瓦斯爆炸的 200 多组试验数据,建立了矿井瓦斯 爆炸冲击波衰减理论模型 (式 (2));基于 24 次煤与瓦 斯突出的真实事故案例,确定了突出煤量与瓦斯量 关系,建立了煤与瓦斯突出涌出量模型 (式 (3))。其 中,巷/隧道火灾时期巷风烟流温度 T ( x , t ) 演化规律如 式 (1) 所示:

式中, t 0 为突出孔洞形成的持续时间,s; v 1 为煤样暴 露 1 s 时的瓦斯解吸速度,cm 3 / (g· s); K n 为煤粒瓦斯 涌出的衰减系数; d 为粉碎煤粉的颗粒直径; p m 为煤 层瓦斯压力; φ m 为煤孔隙率; ρ 为煤密度; p 0 为标准 大气压; M 为突出强度,t。

在灾变模型的基础上,通过考虑不同灾变类型 对巷道风压和风量的叠加效应影响,基于最短路径 算法,建立了参数约束条件灾变风烟流控风模型 (式 (4)),确定关键分支巷道自动风门的调节状态,在保 证灾变时期风流不发生逆转的前提下,将灾变烟流 快速排入回风井。假设通风网络有 n 条分支、 m 个 节点,任一点到回风巷的路径有 k 条,每一条路径上 的路径参数分别为:风阻 Rij , 风压 hij , 距离 Sij , 排烟 量 Lij , 则控风模型的一般形式为

在实际控风过程中,通过对比各个控风方案下 的路径参数,采用熵权法对评价指标客观赋权,确 定了各控风方案下的最优排烟路径,进而确定最优 控风方案,为遇险人员逃生、救护队员应急救援创造 条件,使矿井网络从灾变危险状态快速地恢复为安 全状态。但在实际控风时,还需要考虑风量分配后 能否满足煤矿的需风要求,控风模型的流程如 图 4 所示。

5 矿井智能通风实践及发展趋势

结合枣庄矿业集团付村煤矿一通三防工作实际,立足“ 平战结合”,以“补齐基础硬件层、集成底部控 制层、研究关键技术层、构建核心决策层”的工作思 路,建立了智能通放系统架构 ( 图 5),开展了矿井通 风系统智能决策与动态管控技术的建设与应用示范, 形成付村煤矿矿井通防信息综合管理与控制平台, 平台集通风参数智能感知,通风动力、风门风窗等设 施 智 能 调 控,通 风 安 全 系 统 集 成 管 控 等 功 能 于 一体。

5.1 精准测风系统

在付村矿 3 上 1008 运输巷、3 上 1008 轨道巷、 3 上 1008 运输巷联络巷风窗、北翼轨道石门进风巷、 北翼进风巷、北翼总回风巷 6 个位置安装精准测风 装置,多参数监测装置主机放置在北翼第 2 变电所 内。精准测风装置通过风速检测软件,可实现 6 个 位置断面的实施平均风速测量。同时通过加入测量 断面的面积,增加了实时风量的显示,可方便通风管 理员实时动态的监控各位置的风量情况。通过软件 可查看每个风速检测点的实际安装位置、每个安装 点位的最大值、最小值、平均值等数据,设置下限和 上线报警,进行风速的智能判断报警。现场试验表 明,该精准测风装置系统 ( 图 6) 运行稳定,风速数值 与实际人工测量数据基本吻合,能够满足现场恶劣 环境的使用要求。

5.2 智能风门风窗建设

在 3 下 1008 单轨吊通道、东六轨回第 1 联巷、东六采区集中运输巷、东六采区集中进风巷、北翼轨 回风巷联络巷、3 上 1206 运输巷联络巷 6 套智能风 门,3 下 1008 回风巷联络巷、3 上 605 回风巷联络巷、 3 下 1006 回风巷联络巷、东十单轨吊加油硐室、3 上 605 条带巷回风巷联络巷、东十二辅助采区运输 巷回风巷联络巷 6 套智能风窗的安装,形成了智能风门风窗控制系统 ( 图 7)。现场运行正常,实现了风 门风窗的远程可视化控制,切实提高了通防专业智 能化水平,减少员工劳动强度。

智能风门风窗具备远程控制功能,可以远程控 制或就地实现手动、自动模式切换,驱动与位置反馈 精确无误,可实现风量的线性调节,精度控制和设定 值小于 2% 范围以内;上位机数据可图形化 (仪表盘、 柱状图) 实时显示开、关窗时长、风速、风量、风窗角 度等参数,可实时反馈风窗状态,现场视频监控功能 完好,影像清晰;风窗开关状态、关键动作等数据实 时存储并可自检、查询打印报表;矿井通风智能控制 系统命令执行与反馈功能,控制系统应免费提供与 矿井智能通风系统对接的接口协议实现系统融合, 确保智能通风系统对其控制灵敏可靠;系统具有统 一的数据接口,可与其他系统联网;系统留有外部控 制接口,供 PLC 控制系统接入。

5.3 智能局部风机

在局部风机变电所附近安装隔爆交换机,并铺 设光缆和电源线等,实现局部通风机智能开关数据 远程上传至 智能通风系统中心。实现远程控制及显 示功能;实现与智能通风系统数据交互,实现与智能 通风系统连接并显示局部通风机画面及数据;完成 了 3 下 1006 运输巷、3 下 1009 轨道巷、东十二辅助 采区运输巷 6 台变频局部通风机的安装,并实现数 据上传和远控。

5.4 主通风机

针对主通风机安装了在线监控系统,可实现风 机的远程集中控制,并实现自动化控制,且实时在线 监测风机的各项参数,实现智能化故障诊断,含数据 采集、状态监测、实时报警、数据分析、综合评价、 专家诊断、大数据预警、报表统计,及时提供设备当 前的健康状况及运行趋势等;建立了主通风机运行 的智能数据库,数据库兼有远程专家诊断系统,通过 系统自诊断,实现对叶片扭曲、电机振动、电机温度、电压电流异常等全面预诊断,建成了通风机智能控 制系统 ( 图 8);对风井的防爆门进行了智能化升级改 造,安装了防爆盖锁控状态、防爆盖压板投切位置、 动力源状态及参数、风洞负压等与风井相关设备的 关键数据和参数实现远程监测监控装置,实现了防 爆盖自动复位,具备一键式启动、反风、倒机功能,故 障自动倒机、停机自动倒机等动作时的防爆盖随动 投切功能。

5.5 智能防尘系统

付村煤矿共有 2 处综采工作面、2 条掘进巷和 2 处辅动大巷安装了喷雾降尘系统。其中综采工作 面两巷设计破碎机智能喷雾降尘及破碎机后方净化 水幕,综采工作面回风巷 100 m 设计 1 套净化水幕 喷雾降尘装置;每条综采工作面运输巷有 2 处输送 带转载点各设计 1 套 AI 摄像机智能控制喷雾降尘 装置;每处掘进巷桥转处、跟进输送带处和附近的净 化水幕设计安装共用 1 套喷雾降尘装置;每处掘进 机后方 100 m 处设计安装 1 套智能喷雾降尘装置;每处掘进巷有 2 处输送带转载点各设计 1 套 AI 摄 像机智能控制喷雾降尘装置。

5.6 智能注浆防灭火系统

以安全、实用、精确、高度自动化为原则实现黄 泥灌浆防灭火系统的智能化改造。主要在原有系统 上更换了清水、泥浆电磁流量计、液位传感器、电控 柜及线路等,增加了综合控制操控台及配套的电控 柜,实现了远程控制功能,并增加了视频监控系统。

智能化升级改造后注浆控制系统具有手动、自 动 2 种启动方式。注浆监控系统组态画面显示注浆 流程图、主要参数及设备运行状态,如设备运行电流 等参数,系统具备完善的通信功能,远程控制功能, 实现注浆全过程自动化;计算机综合控制系统和配 套动力系统新增自动化控制操作台 ( 图 10),更换工 业控制计算机及专用系统控制软件,增加远程视频 监控及物联功能,实现实时精确监测制浆,注浆过程 数据,并可自动生成班报表、日报表供查看、统计、 调阅;实现自动化监控,无人值守,整个制浆站仅需 1~2 人,即可实现 24 h 连续制浆作业;相关人员可在 有权限情况下,远程控制施工现场的计算机和各种 设备,现场视频监控系统通过网络同步远传连接至 远程办公室大屏,可用手机或电脑客户端拉伸、缩放 查看关键设备、关键部位。

5.7 现场实施存在的问题及发展趋势

目前,智能通风的建设初步解决了矿井通风管 理工作面临的时效性差、强度大等问题,但仍需要持 续改进,突出表现在以下 3 个方面:

1)智能通风系统还处于自动化有余、智能化不足的阶段。针对这一问题,要重视规划融合大数据 分析、数据挖掘等技术,发挥智能化方法在通风系统 故障分析、灾害智能预警等方面的应用。

2)高精度新型传感器可靠性还不确定,运维保 障制度还不健全,存在因传感器失效而增加风险的可能性。针对该问题,要深入测试分析煤矿井下高 湿、高粉尘等恶劣工况条件下传感器精度衰减变化 规律,形成智能化装备的运维保障制度。

3)鉴于 1)、2) 现状,智能通风系统建设,目前还 未能形成减员提效的局面。为此,要通过常态化运 行深入考察智能通风装备可靠性,论证智能化分析 预警模型的适用性,并率先在条件好的矿区开展瓦 检、测风队伍减员提效的先行先试,在得到验证的基 础上逐步推广。

6 结语

目前,矿井智能通风仍处于发展阶段,通风参数测定精度、通风设施与装备的智能联动可靠性、风网 实时解算方法等方面均在不断进步,更为关键的是 井下风网信息流的认知与一体化监测方法、灾变演化的超前信息感知与风险预警等核心理论与技术的进步,将大幅提升矿井通风智能化水平,真正实现 矿井智能通风增安、减人、提效和提高从业人员在安全 与健康保障方面的幸福感与获得感。

参考文献(略)

❖免责声明:所载内容来源网络、微信公众号等公开渠道,转载稿件版权归原作者、机构所有,转载仅供参考、交流等非商业目的,如有侵权,请联系我们删除。

特别声明

本文仅代表作者观点,不代表本站立场,本站仅提供信息存储服务。

分享:

扫一扫在手机阅读、分享本文