本文目录
- 交易时,盈利的单子总是拿不住,早早就平仓,很累,有好的建议吗
- 单子是什么意思
- 怎么拿住盈利单子
- 趋势交易者该怎样坚定地拿住单子
交易时,盈利的单子总是拿不住,早早就平仓,很累,有好的建议吗
很多人做交易都有一个通病,就是不想利润回吐,又想拿住大的行情,每天这种痛苦中纠结与挣扎,想找一个完美的办法解决这个问题。
下面我来举一个交易中移动止损的例子,大家就能把这个问题理清楚。
我来对比EMA90和EMA30在相同的两段行情中的对比。(分别以EMA90和EMA30作为移动止损的标准,行情突破EMA90或EMA30平仓)
大家先看下方的图
图中是两段完全相同的行情,上方采用EMA90移动止损,由于EMA90在行情中反应慢,出现移动止损信号滞后,移动止损调整的的保守,交易中就拿住了非常大的一波行情,盈利的空间达到了460点。
图中下半部分采用EMA30作为一种止损的方式,EMA30在行情中反应快,出现移动止损的信号迅速,很快就出现了移动止损的信号,移动止损被触发但行情继续奔跑,交易中只拿到了310个点的盈利。
在这段行情中EMA90有绝对的优势。
同样的两个均线,换另外一段行情,表现就完全不一样了。
下方图表中,上半部分依然是EMA90作为移动止损的标准。由于多头行情并没有形成,而是反向走空头,此时EMA90反应慢就成了缺点,而EMA30反应快则成了优点,当行情触发止损的时候,EMA90比下方EMA30多止损26点,同时反向空单进场也浪费26个点。
在这一段行情里EMA30具有更大的优势。
题主的这个问题也曾经是我的疑问。
在完善交易系统的过程中,我也是在不停地追求交易系统的完美,想找到一根均线,既能在反转的行情中及时止损出局,又能在大的趋势中拿住行情,想在亏的时候少亏,赚的时候多赚。
我换了非常多的方法,换了非常多的参数,发现这根本就是一个无法解决的问题。
上文中我们对比了ema30和90,其实我对比过60,120,180,我也对比过其他的出场方式,可以非常肯定地告诉大家,根本就没有完美的参数,行情走势是随机的,并且不可以预测,怎么选都会遇到不配合的行情,但如果坚持选择,也总会遇到配合的行情。
没有完美的出场方式,更没有完美的交易系统。
题主的问题该怎么解决呢?
选定一种出场的方式,也就是统一你的交易标准,配合资金管理,在行情配合的时候拿住利润,在行情不配合的时候,及时地止损截断亏损,最终你会发现,一年下来整体的盈利率会稳定在一个百分比,我的百分比是在40%-60%,再通过常年的复利形成财富的增长。而不是通过不断优化交易系统,瞬间完成财务自由。
首先,改掉你完美主义的强迫症,其次,改掉你的暴利心理,交易会好做很多。
成功的交易一定是:总有一些行情是要错过的,总有一些行情是要做错的,但是只要严格执行交易系统,坚持执行力,总有一些行情能做上,总有一些利润能到手。
弱水三千只取一瓢饮,能抓住属于你的行情就很厉害了,别太贪心。
单子是什么意思
(这是关于《范畴论》一系列回答的第十篇,紧接在问题:”极限的含义?“ 之后,小石头将在本篇中与大家一起讨论单子。)
单子(monad)的哲学解释大家可以参考莱布尼兹的《单子论》,这里仅仅讨论数学中的单子。
在引入单子概念之前,我们先做一些准备。
首先,让我们复习一下以前介绍过的各种复合操作:
态射 f: A → B, g: B → C 的复合还是态射:
gf: A → C
具体定义由各个范畴结合态射的定义给出;
函子 F: A → B, G: B → C 的复合还是函子:
GF: A → C
定义为:
GF(f) = G(F(f)), GF(A) = G(F(A))
自然变换 α: F → G, β: G → U (F, G, U: A → B, α, β: ObA → MorB) 的复合还是自然变换:
β∘α: F → U(β∘α: ObA → MorB)
定义为:
β∘α(A) = β(A)α(A)
考虑到,自然变换复合定义的特殊性,尤其是与其他复合联用时,我们一般不省略 自然变换 之间的 复合 符号。
自然变换 α: F → G(F, G: A → B,α: ObA → MorB)与 函子 U: B → C 的复合是自然变换:
Uα: UF → UG(Uα: ObA → MorC)
定义为:
Uα(A) = U(α(A))
函子 F: A → B 与 自然自然变换 α: G → U(G, U: B → C,α: ObB → MorC) 的复合是自然变换:
αF: GF → UF(αF: ObA → MorC)
定义为:
αF(A) = α(F(A))
自然变换 α: F → G, β: U → V (F, G: A → B, α: ObA → MorB, U, V: B → C, β: ObA → MorB) 的星乘还是自然变换:
β∗α: UF → VG(β∗α: ObA → MorC)
定义为:
β∗α = βG∘Uα = Vα∘βF
Uα: UF → UG, βG: UG → VG, βG∘Uα: UF → VG; βF: UF → VF, Vα: VF → VG, Vα∘βF: UF → VG.
然后,对于平行反向函子 F: A ⇄ B: U,回忆,伴随 F ⊣ B 的前3种定义:
自然变换 η: 1ᴀ → UF(称为 单位),对于每个 A ∈ObA, η(A) 都是 A 到 U 的 泛映射;
如果 对于任意 A ∈ObA, B ∈ObB,都存在 自然双射 φ: Hom(F(A), B) ≅ Hom(A, U(B)) :ψ (称为 附属形式);
自然变换 ε: FU → 1ʙ (称为 余单位),对于每个 B ∈ObB, ε(B) 都是 B 到 F 的 余泛映射;
以及, 第 1,3 种定义 分别 和 第2种定义 之间的关系:
η(A) = φ(1ғ₍ᴀ₎) ,f = φ(g) = U(g)η(A);
ε(B) = ψ(1ᴜ₍ʙ₎),g = ψ(f) = ε(B)F(f);
接下来,我们研究 第 1,3 种定义 之间的关系。
根据 A 的任意性,可令,
A = U(B)
则,F(A) = FU(B)。又,令,
f = 1ᴜ₍ʙ₎
则,
g = ψ(f) = ψ(1ᴜ₍ʙ₎)
再根据前面的关系:ε(B) = ψ(1ᴜ₍ʙ₎) 有,
g = ε(B)
将以上结果,带入前面的关系:f = φ(g) = U(g)η(A) 得到 ①:
1ᴜ₍ʙ₎ = f = φ(g) = U(ε(B))η(U(B))
即,
1ᴜ = Uε∘ηU
同理,令 B = F(A),g = 1ғ₍ᴀ₎,根据前面的关系,最终,可得到 ②:
1ғ = εF∘Fη
结果 ① 和 ② 就是 第 1,3 种定义 之间的关系,绘制成交换图如下:
我们,称 ① 和 ② 为三角恒等式。
三角恒等式 可以作为,伴随的第 4 种定义的条件,即,
对于平行反向函子 F: A ⇄ B: U,如果,存在自然变换 η: 1ᴀ → UF 和 ε: FU → 1B 并且满足 三角恒等式,则 F 和 U 伴随。
上面已经从 前 3 种定义 推出了 定义4,现在只要从 定义4 推导出 定义2,就可以 证明 这些定义的 等价性了。我们,令:
φ(g: F(A)→B ) = U(g)η(A);
ψ(f: A → U(B) ) = ε(B)F(f);
则有,
φ(ψ(f)) = φ(ε(B)F(f)) = U(ε(B)F(f))η(A) = U(ε(B)) U(F(f))η(A) ∵ η 的自然性
∴ = U(ε(B)) η(U(B)) f ∵ 三角恒等式 ①
∴ = 1ᴜ₍ʙ₎ f = f
ψ(φ(g)) = ψ(U(g)η(A)) = ε(B)F(U(g)η(A)) = ε(B)F(U(g)) F(η(A)) ∵ ε 的自然性
∴ = gε(F(A)) F(η(A)) ∵ 三角恒等式 ②
∴ = g 1ғ₍ᴀ₎ = g
于是,就是证明了 φ 和 ψ 是互逆的双射。关于φ 和 ψ 的自然性 也很容易验证(留给大家思考),这样以来我们就推出了定义2。
有了以上准备,接下来我们开始引入单子的概念。
单子
在上面的伴随中,我们以 范畴 A 为焦点, 如果,令 T = UF:A → A,1 = 1ᴀ ,则 伴随的单位,可记为:
η: 1 → T
再考虑 余单位 ε: FU → 1ʙ,我们分别在ε左右复合U和F,可得到:
UεF: UFUF → U1ʙF
而,
UFUF = TT = T² , U1ʙF = UF,
于是,令 μ = UεF,则有 自然变换:
μ: T² → T
令 B = F(A) 为参数,带入 三角恒等 1ᴜ₍ʙ₎ = Uε(B)∘ηU(B) 得到:
1ᴜғ₍ᴀ₎ = UεF(A)∘ηUF(A)
1ᴛ₍ᴀ₎ = μ(A)∘ηT(A)
即,
1 = μ∘ηT
对 三角很等式 1ғ₍ᴀ₎ = εF(A)∘Fη(A) 两边应用 函子 U,有:
U(1ғ₍ᴀ₎) = U(εF(A)∘Fη(A))
由于,函子将幺态射映射到幺态射,所以,
等式左边 = 1ᴜғ₍ᴀ₎
根据,函子的保持复合性,知 ,
等式右边 = UεF(A)∘UFη(A)
等式两边关联的就得到:
1ᴜғ₍ᴀ₎ = UεF(A)∘UFη(A)
1ᴛ₍ᴀ₎ = μ(A)∘Tη(A)
即,
1 = μ∘Tη
将上面的得到的结果绘制成交换图Ⅰ,如下 :
另一方面,考虑 B 中的 任意 态射 f: X → Y, 根据 自然变换 ε: FU → 1ʙ 的自然性,有如下交换图:
令,X = FU(Y),则有:
这时我们发现 f, ε(Y) 同时属于 Hom(FU(Y), Y),于是 可以令 f = ε(Y),则有:
又令,Y = F(A),则有:
再对上图应用 函子 U ,将其从范畴 B 映射 到 范畴 A,有:
将 图中 表达式 改写成 T 和 μ 和形式, 最后 得到 如下交换图Ⅱ:
对应关系式为:
μ∘μT = μ∘Tμ
综上,我们就从 伴随函子 F: A ⇄ B: U 得到了:
定义在 范畴 A 上的 函子 T: A → A ,以及两个 使得 图 Ⅰ 和 Ⅱ 可交换 的 自然变换 η: 1 → T 和 μ: T² → T ,我们 称 T(以及 η 和 μ) 为 单子。
Eilenberg-Moore 范畴
以上,是从 伴随 F: A ⇄ B: U 得到了 A 上的 单子 T,反过来 从 单子 T: A → A 也可以 构造 伴随 F: A ⇄ B: U,这件事 最早 是 由 Eilenberg 和 Moore 通过构造 Eilenberg-Moore 范畴,来实现的。
关于 范畴 A 的 Eilenberg-Moore 范畴,记为: Aᵀ。
Aᵀ 对象 是 由 A 中任意对象 A 和 映射 h: T(A) → A 组成的 序对 (A, h),并且要求满足条件:
1ᴀ = h∘η(A)
h∘μ(A) = h∘T(h)
即,使得下二图可交换:
我们称 (A, h) 为 T-代数,A 称为 代数的 底对象,h 称为 代数的 构造映射,条件1(上面左图)称为 代数的 单位律,条件2(上面右图)称为 代数的 结合律。
Aᵀ 中的态射 与 A 保持一致,即 ㈠,
f: (A, h) → (A’, h’) 当且仅当 f: A → A’
进而 A 中的 态射的 复合 也就 无缝迁移到了 Aᵀ。
由 T-代数 组成 的 范畴 Aᵀ ,就是 我们要构造 的 伴随 F: A ⇄ B: U 中的 B。
函子 U: Aᵀ → A 很自然的可以定义为:
U(A, h) = A, U(f) = f
接着,观察 单子 的 换图 Ⅰ和 Ⅱ 中的关系式:
1(A) = μ(A)∘ηT(A)
μ(A)∘μT(A) = μ(A)∘Tμ(A)
如果 令, h = μ(A),Ã = T(A),则改写为:
1ᴀ = h∘η(Ã)
h∘μ(Ã) = h∘T(h)
刚好满足 T-代数 的 单位律 和 结合律,于是 (Ã, h) 是 Aᵀ 的对象,所以 我们可以定义 函子 F: A → Aᵀ 为:
F(A) = (T(A), μ(A)), F(f) = T(f)
显然,有:
UF(A) = U(T(A), μ(A)) = T(A)
即,
UF = T
于是,η 可记为:
η: 1ᴀ → UF
再考虑,自然变换 ε: FU → 1ᴀᵀ,有:
ε(A, h): FU(A, h) → (A, h)
因为 FU(A, h) = F(A) = (T(A), μ(A)) ,所以:
ε(A, h): (T(A), μ(A)) → (A, h)
又根据 上面 ㈠ 处 Aᵀ 的规定,有:
ε(A, h): T(A) → A
而,恰恰有:
h: T(A) → A
所以,我们可以定义 ε 如下:
ε(A, h) = h
到此为止我们就定义出来了 函子 F :A ⇄ Aᵀ : U 和 自然变换 η: 1ᴀ → UF 与 ε: FU → 1ᴀᵀ,根据这些定义,对于 任意 A ∈ ObA, 结合 单子的图Ⅰ交互性, 有:
εF(A)∘Fη(A) = ε(T(A), μ(A))∘F(η(A)) = μ(A)∘Tη(A) = 1ᴛ₍ᴀ₎ = 1ᴜ₍ғ₍ᴀ₎₎ = U(1ғ₍ᴀ₎) = 1ғ₍ᴀ₎
对于 任意 (A, h) ∈ ObAᵀ ,应用 T-代数 的 单位律,有:
Uε(A, h)∘ηU(A, h) = U(h)∘η(A) = h∘η(A) = 1ᴀ = U(1ᴀ) = 1ᴜ₍ᴀ₎
这样就验证了 “三角恒等式” 成立 ,故,F 和 U 就是 我们要构造的 伴随。
闭包
最后,我们举一个单子的实际例子,以加深对其的理解。
回忆前面的 偏序范畴 Poset,其态射 就是 偏序关系:
A → B iff A ≤ B
态射的复合,就是 偏序的传递性:
A ≤ B ∘ B ≤ C = A ≤ C
设,T: Poset → Poset 是 Poset 上的 单子 ,则,首先 T 是函子,于是有:
T(A ≤ B) = T(A) ≤ T(B)
故,T 是单调递增的。
要使得 η: 1 → T 存在,则,
η(A): A ≤ T(A)
就必须存在,故,显然 T 是 上升的。
要使得 μ: T² → T,存在,则,
μ(A): T²(A) ≤ T(A)
就必须存在,而,又有:
T(A ≤ T(A)) = T(A) ≤ T²(A)
故,只能是:
T²(A) = T(A)
当然,也是,
T(A) = T²(A) = T³(A) = ...
我们,称 这样的 T 为 闭包,一般记为 Ā = T(A)。
可以验证,闭包 满足 单子的要求:
μ(A)∘ηT(A) = T²(A) ≤ T(A) ∘ T(A) ≤ T²(A) =
μ(A)∘Tη(A) = T²(A) ≤ T(A) ∘ T(A ≤ T(A)) = T²(A) ≤ T(A) ∘ T(A) ≤ T²(A) =
T²(A) ≤ T²(A) = T(A) ≤ T(A) = 1ᴛ₍ᴀ₎
μ(A)∘μT(A) = T²(A) ≤ T(A) ∘ T³(A) ≤ T²(A) = μ(A)∘Tμ(A)
故,闭包的确是单子。
闭包和单子是函数式编程中很重要的两个概念,由于本系列回答限制于数学的角度,因此不会涉及计算机语言的内容,以后有机会再和大家一起讨论《范畴论》在计算机语言中的应用。
好了,这篇回答就先到这里,关于单子还有许多内容,我们下一篇回答再继续讨论!
(最后,由于小石头数学水平有限,出错在所难免,欢迎批评指正,同时感谢大家阅读!)
怎么拿住盈利单子
怎么拿住盈利单子?这个问题如果要给题主一个满意答案,估计非一篇简单对答就能做到的。原因是每个人的交易级别不同,交易模型不一,对于盈利的期望值大小不同,还有每个人的交易风格不同……,于是乎,答案也就不尽相同。笔者就个人交易风格和交易级别,聊聊我是如何拿住盈利单子的。仅供朋友间交流与探讨。比如黄金这一段历史数据,空单持仓,现在价格已经运行了扩张形态的7浪且7浪中的小子浪结构也已经完整,我的交易规则就是只要价格不突破最后红色箭头所示的该波段62%,我就会一直持有,直到价格突破空单离场,多单进场。
这是用复盘大师演示的历史数据,实盘中我也是一样,比如我从上周持有的美日空单,到现在依然持有,持仓的理由就是图表和价格形态暗示我,下行波段运行的结构不完整,我会一直持有到结构完整,价格突破最后一个波段的62位离场,然后多单跟进。
欢迎题主和各位朋友对我的答案给予批评指正,以利我今后操作技能的提升。
趋势交易者该怎样坚定地拿住单子
趋势交易者,不应该坚定的拿住单子。
趋势交易者,应该按照自己的规则去持有单子。该止损止损,该止盈就止盈,一直坚定的拿着,根本毫无意义,因为趋势向来是无法预测的。
这样做的话,你是在搏命,对于期货交易者而言,这种风格迟早亏光,或早或晚而已。
按照自己设定好的规则去持有趋势的单子,你的风险可控,你的盈利也有自己的规划,你深知自己交易规则的威力,你知道只要有趋势,你就能持有到你规则的那一部分。
那么就已经非常不错了。
知取舍,不臆测,故为交易。
比如海龟交易法则,入场后,亏损2ATR就止损,根本就不坚定。但是浮盈呢?一直到跌破最近的10日的低点才出场。
这本身就是他的规则,满足规则,就继续坚定的持有,规则之外,坚定的处理持仓,控制风险,保护收益。
他们知道自己的规则本身是具有优势的,他们只需要把这个优势发挥出来就可以,所以,根本就不需要盲目坚定的持有某个方向。
不要偏执,对于持仓而言,所谓的坚定没有意义。
相反,我们期货交易者应该做到的是:坚定的运行自己的交易规则,这才是根本。
各位觉得呢?
点赞支持一下,谢谢。
特别声明
本文仅代表作者观点,不代表本站立场,本站仅提供信息存储服务。