超急 58道趣味数学题?小学趣味的数学题目_趣味_速度_数学题

本文目录

  • 超急 58道趣味数学题
  • 小学趣味的数学题目
  • 趣味数学题及答案
  • 趣味数学题!
  • 一年级趣味数学题求答案!!
  • 一年级经典趣味数学题及答案
  • 小学六年级趣味数学题
  • 小学生二年级趣味数学题
  • 趣味数学题10道

超急 58道趣味数学题

趣味数学题(一)
1.过桥
今有a b c d 四人在晚上都要从桥的左边到右边。此桥一次最多只能走两人,而且只有一支手电筒,过桥是一定要用手电筒。四人过桥最快所需时间如下为:a 2 分;b 3 分;c 8 分;d 10分。走的快的人要等走的慢的人,请问如何的走法才能在 21 分 让所有的人都过桥?
2.巧插数字
125 × 4 × 3 = 2000
这个式子显然不等,可是如果算式中巧妙地插入两个数字“7”,这个等式便可以成立,你知道这两个7应该插在哪吗?
3.温馨四季
春夏 × 秋冬 = 春夏秋冬
春冬 × 秋夏 = 春夏秋冬
式中 春、夏、秋、冬 各代表四个不同的数字,你能指出它们各代表什么数字吗?
4.破车下山
一个破车要走两英哩的路,上山及下山各一英哩,上山时平均速度每小时15英哩问当它下山走第二个英哩的路时要多快才能达到平均速度为每小时30英哩?是45英哩吗?你可要考虑清楚了呦!
5.共卖多少鸡蛋
王老太上集市上去卖鸡蛋,第一个人买走蓝子里鸡蛋的一半又一个,第二个人买走剩下鸡蛋的一半又一个,这时蓝子里还剩一个鸡蛋,请问王老太共卖出多少个鸡蛋?
6.有多少人参加考试
试卷上有6道选择题,每题有3个选项,结果阅卷老师发现,在所有卷子中任选3张答卷,都有一道题的选择互不相同,请问最多有多少人参加了这次考试?
趣味数学题(二)
一、丢番图的墓志铭
古希腊数学家丢番图的墓志铭里包含一个有趣的一元一次方程问题:
过路人!这儿埋葬着丢番图,他生命的六分之一是童年;再过了一生的十二分之一后,他开始长胡须;又过了一生的七分之一后他结了婚;婚后五年他有了儿子,但可惜儿子的寿命只有父亲的一半;儿子死后,老人再活了四年就结束了余生。
根据这个墓志铭,请计算出丢番图的寿命。
二、怎样合算
小臭班里的45个同学在石老师的带领下到一个风景点春游。他们准备买票时,看见一块牌子上写着:“请游客购票:每张票票价2元;50人或50人以上可以购买团体票,票价按八折优惠。”很多同学提出:“我们应该怎样买票比较合算?”石老师说:“这个问题问得好,看谁能计算出来。”
三、分苹果
秋天到了,小猴征征种的苹果都成熟了,他挑了最好的苹果装在6个箱子中,准备送给好朋友童童和欣欣,6个箱子中分别装有11、12、14、16、17、20个苹果。因为童童小,吃东西少一些,所以他准备只把1/3的苹果分给童童,其余的分给欣欣,箱子不能拆分,你知道征征是怎么分的吗?
四、谁将取胜
第三届动物运动会上,老虎和狮子在1200米的长跑比赛中成绩相同。为最后决出胜负,裁判老猴让老虎和狮子举行附加赛。这两头猛兽最后赛的是百米来回跑,共计200米远。老虎每跨一步为2米,狮子一步为3米,但老虎每跨三步,狮子却只能跨两步。
据以上的“情报”,你能提前判断出谁将取胜吗?
五、学生的编号
某学校为每个学生编号,设定末尾用1表示男生,用2表示女生;199713321表示“1997年入学的一年级三班的32号同学,该同学是男生”,那么,199532012表示的学生是哪一年入学的,几年级几班的,学号是多少,是男生还是女生?
答案
趣味数学题(一)
第1题答案: 先是a和b一起过桥,然后将b留在对岸,a独自返回。a返回后将手电筒交给c和d,让c和d一起过桥,c和d到达对岸后,将手电筒交给b,让b将手电筒带回,最后a和b再次一起过桥。则所需时间为:3+2+10+3+3=21分钟。
第2题答案:插入数字后的式子为:1725×4×3=20700
第3题答案:春=2;夏=1;秋=8;冬=7
第4题答案: 无论如何破车的平均速度也不可能达到30英里/小时。因为当平均速度为30英里/小时时,破车上、下山的总时间应为1/15小时。而破车上山就用了1/15小时。所以说破车的平均速度是达不到30英里/小时的。
第5题答案:王老太共卖了10个鸡蛋。
第6题答案:最多有13人参加考试,不过具体的思考过程我也不太清楚,请高手指教!
趣味数学题(二)
一、 设丢番图寿命为x岁,由题意得
x/6+x/12+x/7+5+x/2+4=x
化简这个方程,得75x/84+9=x。
解之,得x=84。
就是说,丢番图的寿命是84岁。
二、 买46张个人票应付钱:2×46=92(元)。
买50张团体票应付钱:2×50×80%=80(元)。
买团体票比买个人票少付:92-80=12(元)。
即买团体票比买个人票少付12元,所以,应该买团体票。
三、 6个箱子中共有苹果11+12+14+16+17+20=90(个),所以童童应分苹果90×1/3=30(个)。因为14+16=30(个),所以应该把装有14、16个苹果的两箱苹果分给童童,其余的分给欣欣。
四、 老虎跨三步,跑2×3=6(米);狮子跨两步,跑3×2=6(米)。所以老虎和狮子跑的速度是一样的。但老虎正好以五十步跑完100米,而狮子则在跑到99米之处后还须再跨一步,到达102米处,然后往回跑。这样,狮子比老虎要多跑4米,故老虎取胜。
五、199532012表示的学生是1995年入学的三年级二班的,学号是1号,该生是女生。
矫正闹钟
答案:我总共用去的时间为4小时50分(7∶00—11∶50),除去游玩的时间一个半小时,走路的时间应为3小时20分钟。因为来去时的步行时间相等,都为1小时40分钟,并且离开博物馆开始往家走的准确时间应为8∶50+1∶30 = 10∶20,所以回到家里的时间应为10∶20+1∶40 = 12。这时,应将闹钟拨到12时才是准确的。
为什么少了1元?
解答:苹果每千克1元,梨每千克 元,混合后每千克(1+ )÷2= 元,而小明2.5千克只收2元,即每千克只收 元。这样,每千克少收 - = 元。苹果和梨一共30千克,就少收了1元。

小学趣味的数学题目

  小学趣味的数学题目

  1.修花坛要用94块砖, 第一次搬来36块,第二次搬来38,还要搬多少块?(用两种方法计算)

  2. 王老师买来一条绳子,长20米剪下5米修理球网,剩下多少米?

  3.食堂买来60棵大白菜,吃了56棵,又买来30棵,现在还有多少棵大白菜?

  4、小红有41元钱,在文具店买了3支钢笔,每支6元钱,还剩多少元?

  5、二(1)班从书店买来了89本书,第一组同学借了25本,第二组同学借了38本,还剩多少本?

  6、果园里有桃树126颗,是梨树棵数的3倍,果园里桃树和梨树一共多少棵?

  7、 1+2+3+4+5+6+7+8+9+10=()

  8、 11+12+13+14+15+16+17+18+19=()

  9、 按规律填数。

  (1)1,3,5,7,9,()

  (2)1,2,3,5,8,13( )

  (3)1,4,9,16,(),36

  (4)10,1,8,2,6,4,4,7,2,()

  10、 在下面算式适当的位置添上适当的运算符号,使等式成立。

  (1)8 8 8 8 8 88 8 =1000

  (2)4 4 4 4 4 =16

  (3)9 8 7 6 5 4 3 2 1=22

  10、用3张十元和2张五十元一共可以组成多少种币值?

  11、用0、1、2、3能组成多少个不同的三位数?

  12. 小华参加数学竞赛,共有10道赛题。规定答对一题给十分,答错一题扣五分。小华十题全部答完,得了85分。小华答对了几题?

  13、 2,3,5,8,12,( ),( )

  14、 1,3,7,15,( ),63,( )

  15、 1,5,2,10,3,15,4,( ),( )

  16、 ○、△、☆分别代表什么数?

  (1)、○+○+○=18

  (2)、△+○=14

  (3)、☆+☆+☆+☆=20

  ○=( ) △=( ) ☆=( )

  17、△+○=9 △+△+○+○+○=25

  △=( ) ○=( )

  18、 有35颗糖,按淘气—笑笑—丁丁—冬冬的顺序,每人每次发一颗,想一想,谁分到最后一颗?

  19、 雪帆小同学有300元钱,买书用去56元,买文具用去128元,雪帆剩下的钱比原来少多少元?

  20、 5个人5天吃了5个大馒头,照这个速度计算,20个人吃掉20个大馒头要用多少天?

  21、 30名学生报名参加美术小组或者书法小组。其中有26人参加了美术组,17人参加了书法组。问两个组都参加的有多少人?

  22、用6根短绳连成一条长绳,一共要打( )个结。

  23、篮子里有10个红萝卜,小灰兔吃了其中的一半,小白兔吃了2个,还剩下( )个。

  24、围绕桌子一周放了一些苹果和梨,已知每2个苹果之间放有2个梨,一共有5个苹果,梨有多少个。

  25、用1、2、3三个数字可以组成()个不同的’三位数。

  26、有两个数,它们的和是9,差是1,这两个数是( )和( )

  27、3个小朋友下棋,每人都要与其他两人各下一盘,他们共要下( )盘。

  28、把4、6、7、8、9、10填下入面的空格里(三行三列的格子),使横行、竖行、斜行上三个数的和都是18。

  29、15个小朋友排成一排报数,报双数的小朋友去打乒乓,队伍里留下()人。

  30、一只梅花鹿从起点向前跳 5米,再向后跳4米,又朝前跳7米,朝后跳10米;然后停下休息,你知道梅花鹿停在起点前还是起点后?与起点相距几米?

  31、哥哥给了弟弟2支铅笔后还剩5支,这时两人的钢笔一样多,弟弟原来有铅笔( )支。

  32、林林、红红、芳芳三个小朋友买糖吃。林林买了7粒,红红买了8粒,芳芳没有买。三个小朋友要平分吃,芳芳一共付了1元钱,其中给林林()角,给红红()。

  33、三个人吃3个馒头,用3分钟才吃完;照这样计算,九个人吃9个馒头,需要( )分钟才吃完?

  34、环形跑道上正在进行长跑比赛。每位运动员前面有7个人在跑,每位运动员后面也有7个人在跑。跑道上一共有( )个运动员?

  35、把16只鸡分别装进5个笼子里,要使每个笼子里鸡的只数都不相同,应怎样装?请把每只笼子里的鸡的只数分别填入下面五个方框中。

  36、今天红红8岁,姐姐13岁,10年后,姐姐比红红大()岁。

  37、汽车每隔15分钟开出一班,哥哥想乘9时10分的一班车,但到站时,已是9时20分,那么他要等()分钟才能乘上下一班车。

  38、从1楼走到3楼,用了24秒;那么从1楼走到6楼,需要( )秒。

  39、二(1)班小朋友排成长方形队伍参加体操表演。红红左看是第6名,右看是第2名,前看是第4名,后看是第3名。二(1)班共有()小朋友。

  40、汽车场每天上午8时发车,每隔8分钟发一辆。那么从8时到8时40分,共发了( )辆车?

  41、一只苹果的重量等于一只桔子加上一只草莓的重量,而一只苹果加上一只桔子的重量等于9只草莓的重量,请问,一只桔子的重量等于几只草莓的重量。

  42、有一个天平,九个砝码,其中一个砝码比另八个要轻一些,问至少要称几次才能将轻的那个找出来?

  43、按规律填数:

  (1)54321 43215 32154 ( ) 154321

  (2) 1,2,3(7) 2,3,4(14) 3,4,5( )

  (3)1,4,7,10,( ),16,,()

  (4)1,2,3,7,11,16,( ),29

  (5)2,5,4,5,6,5,( ),5

  (6)7,8,10,13,17,( )28

  44、10个一百是(),10000里面有()个一千。

  45、3572最高位是()位,读作(),九千零五十写作()。

  46、一个2分币大约重4();小明今年7岁,他的体重约是28()。

  47、90里面有()个十,290里面有()个十。

  48、百位上的6代表的数比十位上的6代表的数多()。

  49、49个苹果平均分给9个小朋友,每人分()个,还剩()个。

  50、判断题(对的在括号里打“√”,错的打“×”)

  (1)、一个数除以4,所得的余数最大是3。()

  (2)、48÷3×2 = 48÷6()

  (3)、一个苹果重120千克。()

  (4)、千位右面一定是万位。()

趣味数学题及答案

1、两个男孩各骑一辆自行车,从相距2O英里(1英里合1.6093千米)的两个地方,开始沿直线相向骑行。在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车径直飞去。它一到达另一辆自行车车把,就立即转向往回飞行。这只苍蝇如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止。如果每辆自行车都以每小时1O英里的等速前进,苍蝇以每小时15英里的等速飞行,那么,苍蝇总共飞行了多少英里?
答案
每辆自行车运动的速度是每小时10英里,两者将在1小时后相遇于2O英里距离的中点。苍蝇飞行的速度是每小时15英里,因此在1小时中,它总共飞行了15英里。
许多人试图用复杂的方法求解这道题目。他们计算苍蝇在两辆自行车车把之间的第一次路程,然后是返回的路程,依此类推,算出那些越来越短的路程。但这将涉及所谓无穷级数求和,这是非常复杂的高等数学。据说,在一次鸡尾酒会上,有人向约翰?冯·诺伊曼(John von Neumann, 1903~1957,20世纪最伟大的数学家之一。)提出这个问题,他思索片刻便给出正确答案。提问者显得有点沮丧,他解释说,绝大多数数学家总是忽略能解决这个问题的简单方法,而去采用无穷级数求和的复杂方法。
冯·诺伊曼脸上露出惊奇的神色。“可是,我用的是无穷级数求和的方法.”他解释道
2、 有位渔夫,头戴一顶大草帽,坐在划艇上在一条河中钓鱼。河水的流动速度是每小时3英里,他的划艇以同样的速度顺流而下。“我得向上游划行几英里,”他自言自语道,“这里的鱼儿不愿上钩!”
正当他开始向上游划行的时候,一阵风把他的草帽吹落到船旁的水中。但是,我们这位渔夫并没有注意到他的草帽丢了,仍然向上游划行。直到他划行到船与草帽相距5英里的时候,他才发觉这一点。于是他立即掉转船头,向下游划去,终于追上了他那顶在水中漂流的草帽。
在静水中,渔夫划行的速度总是每小时5英里。在他向上游或下游划行时,一直保持这个速度不变。当然,这并不是他相对于河岸的速度。例如,当他以每小时5英里的速度向上游划行时,河水将以每小时3英里的速度把他向下游拖去,因此,他相对于河岸的速度仅是每小时2英里;当他向下游划行时,他的划行速度与河水的流动速度将共同作用,使得他相对于河岸的速度为每小时8英里。
如果渔夫是在下午2时丢失草帽的,那么他找回草帽是在什么时候?
答案
由于河水的流动速度对划艇和草帽产生同样的影响,所以在求解这道趣题的时候可以对河水的流动速度完全不予考虑。虽然是河水在流动而河岸保持不动,但是我们可以设想是河水完全静止而河岸在移动。就我们所关心的划艇与草帽来说,这种设想和上述情况毫无无差别。
既然渔夫离开草帽后划行了5英里,那么,他当然是又向回划行了5英里,回到草帽那儿。因此,相对于河水来说,他总共划行了10英里。渔夫相对于河水的划行速度为每小时5英里,所以他一定是总共花了2小时划完这10英里。于是,他在下午4时找回了他那顶落水的草帽。
这种情况同计算地球表面上物体的速度和距离的情况相类似。地球虽然旋转着穿越太空,但是这种运动对它表面上的一切物体产生同样的效应,因此对于绝大多数速度和距离的问题,地球的这种运动可以完全不予考虑.
3、一架飞机从A城飞往B城,然后返回A城。在无风的情况下,它整个往返飞行的平均地速(相对于地面的速度)为每小时100英里。假设沿着从A城到B城的方向笔直地刮着一股持续的大风。如果在飞机往返飞行的整个过程中发动机的速度同往常完全一样,这股风将对飞机往返飞行的平均地速有何影响?
怀特先生论证道:“这股风根本不会影响平均地速。在飞机从A城飞往B城的过程中,大风将加快飞机的速度,但在返回的过程中大风将以相等的数量减缓飞机的速度。”“这似乎言之有理,”布朗先生表示赞同,“但是,假如风速是每小时l00英里。飞机将以每小时200英里的速度从A城飞往B城,但它返回时的速度将是零!飞机根本不能飞回来!”你能解释这似乎矛盾的现象吗?
答案
怀特先生说,这股风在一个方向上给飞机速度的增加量等于在另一个方向上给飞机速度的减少量。这是对的。但是,他说这股风对飞机整个往返飞行的平均地速不发生影响,这就错了。
怀特先生的失误在于:他没有考虑飞机分别在这两种速度下所用的时间。
逆风的回程飞行所用的时间,要比顺风的去程飞行所用的时间长得多。其结果是,地速被减缓了的飞行过程要花费更多的时间,因而往返飞行的平均地速要低于无风时的情况。
风越大,平均地速降低得越厉害。当风速等于或超过飞机的速度时,往返飞行的平均地速变为零,因为飞机不能往回飞了。
4、《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料。下卷收集了一些算术难题,“鸡兔同笼”问题是其中之一。原题如下:令有雉(鸡)兔同笼,上有三十五头,下有九十四足。
问雄、兔各几何?
原书的解法是;设头数是a,足数是b。则b/2-a是兔数,a-(b/2-a)是雉数。这个解法确实是奇妙的。原书在解这个问题时,很可能是采用了方程的方法。
设x为雉数,y为兔数,则有
x+y=b, 2x+4y=a
解之得
y=b/2-a,
x=a-(b/2-a)
根据这组公式很容易得出原题的答案:兔12只,雉22只。
5、我们大家一起来试营一家有80间套房的旅馆,看看知识如何转化为财富。
经调查得知,若我们把每日租金定价为160元,则可客满;而租金每涨20元,就会失去3位客人。 每间住了人的客房每日所需服务、维修等项支出共计40元。
问题:我们该如何定价才能赚最多的钱?
答案:日租金360元。
虽然比客满价高出200元,因此失去30位客人,但余下的50位客人还是能给我们带来360*50=18000元的收入; 扣除50间房的支出40*50=2000元,每日净赚16000元。而客满时净利润只有160*80-40*80=9600元。
当然,所谓“经调查得知”的行情实乃本人杜撰,据此入市,风险自担。

趣味数学题!

题目中有三类事物,一个桃子、两个桃子、一个人物。
根据第一行,可以知道3份两个桃子是18,所以每份两个桃子是18÷3=6。
根据第二行,两个桃子和两个孩子是52。所以孩子是(52-6)÷2=23。
再看第三行,23+6+一个桃子=30。一个桃子等于1。
将得到的一个桃子和孩子所代表的数放入最后一行。
23+1×1=?,这时可知最后的结果是24。

一年级趣味数学题求答案!!

解:
先拆掉左上两根小棒,得到三个小格。再去掉下面右边的一根小棒,这三根与右边下面的小棒组成一个品字形

一年级经典趣味数学题及答案

  经典的趣味数学题特别受学生的青睐,下面是我为大家整理的一年级经典趣味数学题及答案,仅供参考。
  一年级经典趣味数学题篇一
  1.小华的爸爸1分钟可以剪好5只自己的指甲。他在5分钟内可以剪好几只自己的指甲?

  2.小华带50元钱去商店买一个价值38元的小汽车,但售货员只找给他2元钱,这是为什么?

  3.小军说:“我昨天去钓鱼,钓了一条无尾鱼,两条无头的鱼,三条半截的鱼。你猜我一共钓了几条鱼?”同学们猜猜小军一共钓了几条鱼?

  4.6匹马拉着一架大车跑了6里,每匹马跑了多少里?6匹马一共跑了多少里?

  5.一只绑在树干上的小狗,贪吃地上的一根骨头,但绳子不够长,差了5厘米。你能教小狗用什么办法抓着骨头呢?

  6.王某从甲地去乙地,1分钟后,李某从乙地去甲地。当王某和李某在途中相遇时,哪一位离甲地较远一些?

  7.时钟刚敲了13下,你现在应该怎么做?

  8.在广阔的草地上,有一头牛在吃草。这头牛一年才吃了草地上一半的草。问,它要把草地上的草全部吃光,需要几年?

  9.妈妈有7块糖,想平均分给三个孩子,但又不愿把余下的糖切开,妈妈怎么办好呢? 10.公园的路旁有一排树,每棵树之间相隔3米,请问第一棵树和第六棵树之间相隔多少米?

  11.把8按下面方法分成两半,每半各是多少?算术法平均分是____,从中间横着分是____,从中间竖着分是____.

  12.一个房子4个角,一个角有一只猫,每只猫前面有3只猫,请问房里共有几只猫? 13.一个房子4个角,一个角有一只猫,每只猫前面有4只猫,请问房里共有几只猫? 14.小军、小红、小平3个人下棋,总共下了3盘。问他们各下了几盘棋?(每盘棋是两个人下的)

  15.小明和小华每人有一包糖,但是不知道每包里有几块。只知道小明给了小华8块后,小华又给了小明14块,这时两人包里的糖的块数正好同样多。同学们,你说原来谁的糖多?多几块?
  一年级经典趣味数学题答案(一)
  1.20只,包括手指甲和脚指甲

  2.因为他付给售货员40元,所以只找给他2元;

  3.0条,因为他钓的鱼是不存在的;

  4.6里,36里;

  5.只要教小狗转过身子用后脚抓骨头,就行了。

  6.他们相遇时,是在同一地方,所以两人离甲地同样远;

  7.应该修理时钟;

  8.它永远不会把草吃光,因为草会不断生长;

  9.妈妈先吃一块,再分给每个孩子两块;

  10.15米;

  11.4,0,3.

  12.4只;

  13.5只;

  14.2盘;

  15.原来小华糖多;14-8=6块,因为多给了6块两人糖的块数正好同样多,所以原来小华比小明多12块。
  一年级经典趣味数学题篇二
  1.警察与小偷。

  一个小偷被警查发现,警查就追小偷,小偷就跑,跑着着跑着,前面出现条河,这河宽12米,河在小偷和警查这面有颗树,树高12米,树上叶子都光了,小偷围着个围脖长6米。

  问小偷如何过河?

  2.分桃子。

  幼儿园的老师给三组小孩分桃子,如只分给第一组,则每个孩子可得7个;如只分给第二组,则每个孩子可得8个;如只分给第三组,则每个孩子可得9个。

  3.弹珠有多少?

  天天跟甜甜一块到草地上玩弹珠,天天说:“把你的弹珠给我2个吧,这样我的弹珠就是你的3倍了。“甜甜对天天说:“还是把你的弹珠给我2个吧,这样我们的弹珠就一样多了。“分析一下,天天跟甜甜原来各有多少个弹珠?

  4.运大米。

  有100石大米,需要用牛车运到米行,米行恰巧找来了100辆牛车,牛车有大小之分,大牛车一次可以运三石,中型的牛车可以运两石,而小牛车却需要用两辆才能运一石。请问如果既要把大米运完又要把100辆车用够,该如何分配牛车?

  5.青蛙跳井。

  有一口深4米的井,井壁非常光滑。井底有只青蛙总是往井外跳,但是,这只青蛙每次最多能跳3米,你觉得这只青蛙几次能跳到井外去吗?为什么?
  一年级经典趣味数学题答案(二)
  1.答:把围脖系在树顶上,小偷就吊着围脖荡秋千,围脖和树干成45度角的时候就放手,就会把小偷甩过河了。

  2. 答:老师现在想把这些苹果平均分别三组的孩子,你能告诉她要每个孩子分几个吗?

  设有N个桃子,一组X个孩子,二组Y个孩子,三组Z个孩子,则有N/X=7,N/Y=8,N/Z=9。由上式知道桃子数量是7、8、9的公倍数;然后算出最小公倍数504,分别除以7、8、9,得出小组的数量比:72:63:56;最后用504除以7、8、9的和,得出每个孩子分到的桃是21个。

  3.答:第一步:先假设天天有弹珠x个,甜甜有弹珠y个;

  第二步:由天天的话可以得到x+2=3y;

  第三步:由甜甜的话可以得到x2=y;

  第四步:解两个式子得x=4,y=2即为答案。

  4.答:首先可以设大牛车用x辆,中型牛车y辆,小型牛车z辆,依题意知x+y+z=100,3*x+2*y+z/2=100,然后分情况讨论即可得出答案。

  5.答:此题易混淆人的做题思路。多数人认为青蛙一次跳3m,两次就可以跳6米,超过了井的深度,两次就可以跳出井。这是出错的。因为题中说“井壁非常光滑“,说明青蛙在跳到3米高度时,会因为触到井壁而重新落回井底,所以无论这只青蛙跳多少次,它都跳不到井外去,除非它一次跳的高度超过井的深度。题目解答。
  猜你喜欢:
1. 经典趣味数学题一年级及答案

2. 趣味智力题|数学智力题

3. 趣味智力题|数学智力题

4. 趣味智力题|数学智力题

5. 趣味智力题|数学智力题

6. 趣味智力题|数学智力题

7. 小学数学趣味智力题及答案

8. 一年级趣味数学题

9. 小学数学智力题及答案

10. 趣味智力题|数学智力题

小学六年级趣味数学题

  兴趣是最好的老师,六年级趣味数学题提高学生对数学的兴趣,我整理了小学六年级趣味数学练习题,希望对你有帮助!

  小学六年级趣味数学题(上)

  (1)在六(3)班联欢会的“猜迷”抢答比赛中,有10题抢答题,规定答对1题得5分,答错1题得–8分,不答者得0分,玲玲共得12分,她抢答对几道题?答错几道题?

  (2)如果一个圆柱的侧面展开图是一个正方形,那么这个圆柱的高是圆柱底面半径的多少倍?

  (3)一根长2米的钢筋,横截成两段后,表面积增加了6.28平方厘米。这根钢筋的体积是多少立方厘米?

  (4)学校买来长135米的一捆塑料绳,先剪下27米做了15根跳绳。照这样计算,剩下的绳子可以做多少根跳绳?

  (5)哥哥有100元钱,弟弟有80元,哥哥给弟弟多少元钱后兄弟两人的钱数比是7:11?

  (6)把红白蓝三种颜色的小旗各10面混在一起。如果让你闭上眼睛拿,每次至少拿多少面小旗才能保证一定有两面小旗是同色的?

  (7)某次会议共有129人参加,如果你与每人握一次手,那么你共握手( )次。

  (8)把7只小猫分别关进3个笼子里,不管怎么放,总有一个笼子里至少有( )只猫。

  (9)用“2”、“7”、“8”、“5”和3个“0”组成一个“0”也不读的最小七位数是( )。

  (10)如果一个正方形和一个圆的周长相同,( )的面积最大。

  (11)王芳和李刚各有钱若干元,若王芳拿出她原有钱数的给李刚,李刚拿出他原有钱数的给王芳,则两人的钱数正好相等。他们原来各有的钱数比是( )。

  (12)一条线段把一个长方形分为两部分,4条线段最多能把一个长方形分成( )部分。

  (13)两个牧童放羊,甲对乙说:“把你的羊给我1只,我的羊正好是你的羊的2倍。”乙对甲说:“最好还是把你的羊给我1只,这样我与你的羊的只数就相等了。”请问甲有( )只羊,乙有( )只羊。

  (14)7千克苹果和4千克梨的价钱相等,1千克梨比1千克苹果贵0.6元。梨、苹果每千克各多少钱?

  (15)有两袋糖,一袋是84粒,另一袋是20粒,每次从多的一袋取出8粒放到少的一袋里去,拿( )次才能使两袋糖同样多?

  小学六年级趣味数学题(中)

  1. 0.25=( )÷12=24/( )=( )﹪=( )折

  2.李老师让同学们猜她家的门牌号码,她家的门牌号码是个三位数,百位上是最小的合数,十位上是最小的质数,个位上是最大的一位数。李老师家的门牌号是( )

  3.布袋里有黄、红、蓝三种颜色的筷子各八根,它们除了颜色不同外完全相同,现在从中至少摸出( )根筷子,才能保证有2双不同颜色的筷子。

  4、添上适当的运算符号和括号,使等式成立。

  9 9 9 9 9 = 12

  9 9 9 9 9 = 20

  5.桌子上原来有12支点燃的蜡烛,先被风吹灭了3根,不久又一阵风吹灭了2根,最后桌子上还剩( )根蜡烛

  6. 小华的爸爸1分钟可以剪好5只自己的指甲。他在5分钟内可以剪好( )只自己的指甲

  7.兔和鸡共25只,有90条腿,兔有( )只,鸡有( )只。

  8、小张和小王住在同一幢楼里,这幢楼相邻两层间的楼梯级数相同。小张住4楼,回家要走54级楼梯,小王住在8楼,小王回家要走( )级楼梯。

  9.把分数5/7化成小数后,小数点后面第1993位上数字是( )

  10.一个小组共有14名同学,至少有( )名同学同一个月生日。

  11.表哥比小明大19岁,正好比小明年龄的3倍多1岁,小明( )岁。

  12.生产小组抽查了500个产品,发现合格率为98%,合格产品与不合格产品的最简比是( )

  13.大圆直径是小圆直径的3倍,大、小两圆周长的比是( ),面积比是( )

  14.A、B、C三人进行跑步比赛,甲、乙、丙三人对比赛结果进行预测。甲说:“A肯定是第一名。”乙说:“A不是最后一名。”丙说:“A肯定不是第一名。”其中只有一人对比赛结果的预测是对的。预测对的是( )

  15、一天有个年轻人来到王老板的店里买一件礼物,这件礼物成本是18元,售价是21元。 结果是这个年轻人掏出100元要买这件礼物。 王老板当时没有零钱,用那100元向街坊换了100元的零钱,找给年轻人79元。 但是街坊后来发现那100元是假钞,王老板无奈还了街坊100元。王老板在这次交易中最终损失了( )钱。

  二、我能做(每题5分)

  1.简便计算

  (198+32×72)—2472÷24 7.8×1/5+2.2×20%

  3333×3333+9999×8889 2009/2010×2011

  2.牛的头数比羊的头数多25﹪,羊的头数比牛的头数少百分之几?

  3.一段路长30千米,甲队单独修10天完成,乙队单独修15天完成,两队合修几天可以完成?

  4、某工厂三个车间共有180人,第二车间人数是第一车间人数的3倍还多1人,第三车间人数是第一车间人数的一半少1人。三个车间各有多少人?

  5、兄弟二人三年后的年龄和是26岁,弟弟今年的年龄恰好是兄弟二人年龄差的2倍。问,3年后兄弟二人各几岁?

  6、学校组织学生于3月12日这天沿龙溪港西岸植树,从北到南每隔8米栽一棵,如果两人合栽一棵,共需312人,龙溪港长多少米?

  7、假设有一个池塘,里面有无穷多的水。现有2个空水壶,容积分别为5升和6升。问题是如何只用这2个水壶从池塘里取得3升的水。

  8.环形跑道长800米,甲跑道每秒行4米,乙骑车,速度是甲的4倍,两人同时从同一地点同一方向出发,至少过多少时间,两人又从此出发点同时出发?

  小学六年级趣味数学题(下)

  21. 圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金属线还差0。4米,如果再截取2根长度为A的金属线则还差2米,长度为A的等于几米?

  22. 某公司要往工地运送甲、乙两种建筑材料。甲种建筑材料每件重700千克,共有120件,乙种建筑材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次?

  23. 从王力家到学校的路程比到体育馆的路程长1/4,一天王力在体育馆看完球赛后用17分钟的时间走到家,稍稍休息后,他又用了25分钟走到学校,其速度比从体育馆回来时每分钟慢15米,王力家到学校的距离是多少米?

  24. 师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5。两人合作6天,完成全部工程的2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,如果这项工程由师傅一人做,几天完成?

  25. 六年级五个班的同学共植树100棵。已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班。又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?

  26. 甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米。乙总共跑了多少千米?

  27. 有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米。容器A中装满水,容器B是空的,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7/8还低2厘米。容器的高度是多少厘米?

  28. 有104吨的货物,用载重为9吨的汽车运送。已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成。

  29. 师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件?

小学生二年级趣味数学题

97元。

分析:在这次交易中,用王老板的支出-收入,所得结果即为所求

解答:因为总付出79+18+100=197,

总收入100+100(假币)=100,所以197-100=97.

这道题运用了有理数的知识点,有理数的混合运算,它没有考查单纯的计算,而是与实际问题相结合。

扩展资料:

有理数运算定律

一、加法运算律:

1、加法交换律:两个数相加,交换加数的位置,和不变,即 。

2、加法结合律:三个数相加,先把前两个数相加或者先把后两个数相加,和不变,即 。

 

 

二、减法运算律:

减法运算律:减去一个数,等于加上这个数的相反数。即:

 。

三、乘法运算律:

1、乘法交换律:两个数相乘,交换因数的位置,积不变,即 。

2、乘法结合律:三个数相乘,先把前两个数先乘,或者先把后两个相乘,积不变,即 。

3、乘法分配律:某个数与两个数的和相乘等于把这个数分别与这两个数相乘,再把积相加,即:

   。

参考资料来源:百度百科--有理数

趣味数学题10道

1.有人编写了一个程序, 从1开始, 交替做乘法或加法, (第一次可以是加法,也可以是乘法), 每次加法, 将上次运算结果加2或是加3;每次乘法,将上次运算结果乘2或乘3, 例如30, 可以这样得到: 1 +3 =4*2=8+2=10*3=30,请问怎样可以得到:2的100次+2的97次-2
解答:1+3=4+2=2的3次-2=2的3次+2-2=(2的3次+2-2)*2=……==2的100次+2的97次-2的97次=2的100次+2的97次-2的97次+2=2的100次+2的97次-2的97次+2+2=……=2的100次+2的97次-2
2.下诗出于清朝数学家徐子云的著作,请算出诗中有多少僧人?
巍巍古寺在云中,不知寺内多少僧。
三百六十四只碗,看看用尽不差争。
三人共食一只碗,四人共吃一碗羹。
请问先生明算者,算来寺内几多僧?
解答:三人共食一只碗:则吃饭时一人用三分之一个碗,
四人共吃一碗羹:则吃羹时一人用四分之一个碗,
两项合计,则每人用1/3+1/4=7/12个碗,
设共有和尚X人,依题意得:
7/12X=364
解之得,X=624
3.两个男孩各骑一辆自行车,从相距2O英里(1英里合1.6093千米)的两个地方,开始沿直线相向骑行。在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车径直飞去。它一到达另一辆自行车车把,就立即转向往回飞行。这只苍蝇如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止。如果每辆自行车都以每小时1O英里的等速前进,苍蝇以每小时15英里的等速飞行,那么,苍蝇总共飞行了多少英里?
解答:每辆自行车运动的速度是每小时10英里,两者将在1小时后相遇于2O英里距离的中点。苍蝇飞行的速度是每小时15英里,因此在1小时中,它总共飞行了15英里。
4.《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料。下卷收集了一些算术难题,“鸡兔同笼”问题是其中之一。原题如下: 令有雉(鸡)兔同笼,上有三十五头,下有九十四足。问雄、兔各几何?
解答:设x为雉数,y为兔数,则有
x+y=b, 2x+4y=a
解之得:y=b/2-a,
x=a-(b/2-a)
根据这组公式很容易得出原题的答案:兔12只,雉22只。
5.我们大家一起来试营一家有80间套房的旅馆,看看知识如何转化为财富。
经调查得知,若我们把每日租金定价为160元,则可客满;而租金每涨20元,就会失去3位客人。 每间住了人的客房每日所需服务、维修等项支出共计40元。
问题:我们该如何定价才能赚最多的钱?
解答:日租金360元。
虽然比客满价高出200元,因此失去30位客人,但余下的50位客人还是能给我们带来360*50=18000元的收入; 扣除50间房的支出40*50=2000元,每日净赚16000元。而客满时净利润只有160*80-40*80=9600元。
6. 数学家维纳的年龄:我今年岁数的立方是个四位数,岁数的四次方是个六位数,这两个数,刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,维纳的年龄是多少?
解答:设维纳的年龄是x,首先岁数的立方是四位数,这确定了一个范围。10的立方是1000,20的立方是8000,21的立方是9261,是四位数;22的立方是10648;所以10=《x《=21 x四次方是个六位数,10的四次方是10000,离六位数差远啦,15的四次方是50625还不是六位数,17的四次方是83521也不是六位数。18的四次方是104976是六位数。20的四次方是160000;21的四次方是194481; 综合上述,得18=《x《=21,那只可能是18,19,20,21四个数中的一个数;因为这两个数刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,四位数和六位数正好用了十个数字,所以四位数和六位数中没有重复数字,现在来一一验证,20的立方是80000,有重复;21的四次方是194481,也有重复;19的四次方是130321;也有重复;18的立方是5832,18的四次方是104976,都没有重复。 所以,维纳的年龄应是18。
7.把1,2,3,4……1986,1987这1987个自然数均匀排成一个大圆圈,从1开始数:隔过1划2,3;隔过4划掉5,6,这样每隔一个数划掉两个数,转圈划下去,问:最后剩下哪个数。
解答:663
8.在一幅长90厘米,宽40厘米的风景画的四周外围向上一条宽度相同的金色纸边,制成一幅挂图,如果要求风景画的面积是整个挂图面积的百分之72,那么金色纸边的宽应为多少?
解答:根据题意有(90+2X)(40+2X)*72%=90*40
(90+2X)(40+2X)=3600/0.72
3600+180X+80X+4X2=5000
4X2+260X-1400=0
(4X-20)(X+70)=0
得 4x-20=0 X+70=0
4*x=20 X=5
X=-70 不成立
所以X=5CM
9.用黑白两种颜色的皮块缝制而成的足球,黑色皮块是正五边形,白色皮块是正六边形,若一个球上共有黑白皮块32块,请计算,黑色皮块和白色皮块的块数
解答:等量关系:
白色皮块中与黑色皮块中共用的边数=黑色皮块中与白色皮块共用的边数
设:有白色皮块x
3x=5(32-x)
解得 x=20
10.抽屉中有十只相同的黑袜子和十只相同的白袜子,假若你在黑暗中打开抽屉,伸手拿出袜子,请问至少要拿出几只袜子,才能确定拿到了一双?
解答:3
11.小赵,小钱,小孙,小李4人讨论一场足球赛决赛究竟是哪个队夺冠。小赵说:“D对必败,而C队能胜。”小钱说:“A队,C队胜于B队败会同时出现。”小孙说:“A队,B队C队都能胜。”小李说:“A队败,C队,D队胜的局面明显。”
他们的话中已说中了哪个队取胜,请问你猜对究竟哪个队夺冠吗?
解答:小赵,小钱,小孙,小李4人讨论一场足球赛决赛究竟是哪个队夺冠。小赵说:“D对必败,而C队能胜。”小钱说:“A队,C队胜与B队败会同时出现。”小孙说:“A队,B队C队都能胜。”小李说:“A队败,C队,D队胜的局面明显。”
小赵的话说明 D队败
小钱的话说明 B队败
小孙的话说明 D队败
小李的话说明 A队败
所以,C队胜利
12.如果长度为a,b,c的三条线段能够成三角形,那麽线段根号a,根号b,根号c是否能够成三角形?
如果一定能构成或一定不能构成,请证明
如果不一定能够,请举例说明.
解答:可以。
不妨假设a最小,c最大,那么abc构成三角形的充要条件就是a+b》c;
这时√a+√b与√c比较,其实就是a+b+2√ab与c比较(两边平方),a+b已经大于c了,那么显然可以构成三角形。
13.有一位农民遇见魔鬼,魔鬼说:“我有一个主意,可以让你发财!只要你从我身后这座桥走过去,你的钱就会增加一倍,走回来又会增加一倍,每过一次桥,你的钱都能增加一倍,不过你必须保证每次在你的钱数加倍后要给我a个钢板,农民大喜,马上过桥,三次过桥后,口袋刚好只有a个钢板,付给魔鬼,分文不剩,请有含a的单项式表示农民最初口袋里的钢板数。
解答:设最初钱数为x
2-a=0
解方程得x=7a/8
14.三个同学放学回家,途中见到一辆黄色汽车,等他们再往前走时,听说那辆车撞伤一位老人后竟然逃之夭夭.可是谁也没记下这辆汽车的车牌号.警察询问这三个中学生时,他们都说车牌号是一个四位数.其中一个记得这个号码的前两位相同,另一个记得这个号码的后两位数字相同,第三个记得这个四位数恰好是完全平方数,你能确定这辆肇事汽车的车牌号吗
解答:四位数可以表示成
a×1000+a×100+b×10+b
=a×1100+b×11
=11×(a×100+b)
因为a×100+b必须被11整除,所以a+b=11,带入上式得
四位数=11×(a×100+(11-a))
=11×(a×99+11)
=11×11×(9a+1)
只要9a+1是完全平方数就行了。
由a=2、3、4、5、6、7、8、9验证得,
9a+1=19、28、27、46、55、64、73。
所以只有a=7一个解;b=4。
因此四位数是7744=11^2×8^2=88×88
15.已知1加3等于4等于2的2次方,1加3加5等于9等于3的2次方,1加3加5加7=16等于4的2次方,1加3加5加7加9等于25等于5的2次方,等......
《1》仿照上例,计算1加2加3加5加7加...加99等于?
《2》根据上面规律,请用自然数n(n大于等于1)表示一般规律。
解答:《1》1+3+5+...+99=50的平方
《2》1+3+5+...+n=的平方
16.有一次,一只猫抓了20只老鼠,排成一列。猫宣布了它的决定:首先将站在奇数位上的老鼠吃掉,接着将剩下的老师重新按1、2、3、4…编号,再吃掉所有站在奇数位上的老鼠。如此重复,最后剩下的一只老鼠将被放生。一只聪明的老鼠听了,马上选了一个位置,最后剩下的果然是它,猫将它放走了!
你知道这只聪明的小老鼠站的是第几个位置吗?
解答:排在第16个。第1次能被2整除的剩下了,第2次能被4(2的平方)整除的剩下了,第3次能被8(2的3次方)整除的剩下了,第4次能被16(2的4次方)整除的剩下了,所以只有第16个不会被吃掉。
17.1/(1*2*3)+1/(2*3*4)+1/(3*4*5)+…+1/(98*99*100)
解答:1/(1*2*3)+1/(2*3*4)+1/(3*4*5)+…+1/(98*99*100)
=(1-1/2-1/3)+(1/2-1/3-1/4)+(1/3-1/4-1/5)+......1/98-1/99-1/100
=1-1/100
=99/100
备注:1/(1*2*3)=1-1/2-1/3
18.小伟和小明交流暑假中的活动情况,小伟说:“我参加了科技夏令营,外出一个星期,这七天的日期数之和是84,你知道我是几号出发的吗?”小明说:“我假期到舅舅家住了七天,日期数的和再加月份数也是84,你能猜出我是几月几号回家的吗?
解答:第一题:设出发那天为X号
X+X+1+X+2+X+3+X+4+X+5+X+6=84
X=9
小伟是9号出发的。
第二题:因为是暑假里的活动,所以只能是7或者8月份
设回来那天为X号
列示为
7+X+X-1+X-2+X-3+X-4+X-5+X-6=84
或者
8+X+X-1+X-2+X-3+X-4+X-5+X-6=84
第一式解出X=14
第二式结果不为整数
所以只能是7月14号到家
19.某校初一有甲、乙、丙三个班,甲班比乙班多4个女生,乙班比丙班多1个女生,如果将甲班的第一组同学调入乙班,同时将乙班的第一组同学调入丙班,同时将丙班的第一组同学调入甲班,则三个班的女生人数恰好相等。已知丙班第一组有2名女生,问甲、乙两班第一组各有多少女生?
解答:设甲乙两班第一组的女生分别有m和n个 丙班女生有x个乙班就有x+1个,甲班就有x+5个 平均x+2个 (利用改变量来计算)丙班:-2+n=(x+2)-x
甲班:+2-m=(x+2)-(x+5) 可以得出 m=5 n=4
20.有一水库,在单位时间内有一定量的水流量,同时也向外放水。按现在的放水量,水库中的水可使用40天。因最近库区降雨,使流入水库的水量增加20%,如果放水量也增加10%,那么仍可使用40天。问:如果按原来的放水量放水,可使用多少天?
解答: 设水库总水量为x 一天的进水量和出水量分别为m和n
则有x/(n-m)=40=x/
可以先化简得n=2m x=40m 带入第二个式子即可得到x=50天
21.某宾馆先把甲乙两种空调的温度设订为1度,结果甲种空调比乙种空调每天多节电27度再对乙种空调进行清洗设备,使得乙种空调每天的总节电量是只将温度调高1度后的节电量的1.1倍而甲种空调的节电量不变这样两种空调每天共节电405度求只将温度条调高1度后两种空调每天共节电多少度?
解答:设只将温度调高1度后,甲乙两种空调每天各节电X,Y度
X-Y=27,
X+1.1Y=405
X=207
Y=180
甲乙两种空调每天各节电207,180度.
22.红棉村有1000公顷荒山,绿化率达80%,300公顷良田不需要绿化,今年X公顷河坡地植树绿化率达20%,这样红棉村所有土地的绿化率就达到60%,河坡地共有多少公顷?
解答:(x*20%+1000*80%)/(1000+300+x)=60%
(0.2*x+800)/(1300+x)=0.6
0.2*x+800=780+0.6*x
x=50公顷
23.一张纸厚0.06厘米,地球到月球的距离是3.85*10^5千米.
小明说,如果将这张纸裁成两等份,把裁成两等份的纸摞起来,再裁两等份,如果重复下去,所有纸的高度大于月球到地球的距离.
小刚说,我不信小明的说法.
小明的说法是对的吗?为什么?
解答:裁40次就高于3.85*10^5千米
2^40*0.06/100000=6.597*10^5千米
小明的说法是对,只是这张纸一定要够大,要不能裁了几次就裁不了
24.有27颗珍珠,其中一颗是假的,但外观和真的一样,只是比真的珍珠轻一点.问:最少用天平称几次(不用砝码),就一定可以把假的珍珠找出来?
解答:3次
第一次把27颗珍珠分成3等份,取其中2份放天平两端称量,如果天平偏斜,则考虑轻的那9颗珍珠,如果不偏斜,则考虑没有称量的那9颗;同理,将这9颗珍珠再分成3等份,,取其中2份放天平两端称量,再次得到3颗“可疑“的珍珠,取出两颗称量,如果天平偏斜,则轻的是次品~否则没称量的是次品
25.埃及同中国一样,也是世界上著名的文明古国,古代埃及人处理分数与众不同,他们一般只使用分子为1的分数,例如用1/3+1/15表示2/5,用1/4+1/7+1/28来表示3/7等等,现在用90个埃及分子1/2,1/3,1/4,1/5,......。1/90。1/91,其中是否再10个数,加上正负号后使它们的和为-1,若存在,请写出这10个数,若不存在,请说明理由。
解答:一解:
-1=-1/5-1/6-1/8-1/9-1/10-1/12-1/15-1/18-1/20-1/24
二解:
1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10=1-1/10
所以:
1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90+1/10=1
即:
-1/2-1/6-1/12-1/20-1/30-1/42-1/56-1/72-1/90-1/10=-1

特别声明

本文仅代表作者观点,不代表本站立场,本站仅提供信息存储服务。

分享:

扫一扫在手机阅读、分享本文