七年级上册数学题(七年级数学上应用题精选带答案)_千米_的是_车间

本文目录

  • 七年级数学上应用题精选带答案
  • 七年级数学上册期末测试题人教版
  • 七年级数学上册应用题及答案20道!!!!!!!!!!!!!
  • 学年七年级上册数学期中测试题
  • 七年级上册数学难题100题,要有答案的
  • 七年级上册数学经典习题

七年级数学上应用题精选带答案

  只要持之以恒地做 七年级数学 应用题,努力掌握规律,达到熟悉的境地,就能融会贯通,运用自如了。我整理了关于七年级数学上册精选的应用题和答案,希望对大家有帮助!
  七年级数学上应用题精选带答案:1-10题
  1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运.还要运几次才能完?

  还要运x次才能完

  29.5-3*4=2.5x

  17.5=2.5x

  x=7

  还要运7次才能完

  2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?

  它的高是x米

  x(7+11)=90*2

  18x=180

  x=10

  它的高是10米

  3、某车间计划四月份生产零件5480个.已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?

  这9天中平均每天生产x个

  9x+908=5408

  9x=4500

  x=500

  这9天中平均每天生产500个

  4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米.甲每小时行45千米,乙每小时行多少千米?

  乙每小时行x千米

  3(45+x)+17=272

  3(45+x)=255

  45+x=85

  x=40

  乙每小时行40千米

  5、某校六年级有两个班,上学期级数学平均成绩是85分.已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?

  平均成绩是x分

  40*87.1+42x=85*82

  3484+42x=6970

  42x=3486

  x=83

  平均成绩是83分

  6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?

  平均每箱x盒

  10x=250+550

  10x=800

  x=80

  平均每箱80盒

  7、四年级共有学生200人,课外活动时,80名女生都去跳绳.男生分成5组去踢 足球 ,平均每组多少人?

  平均每组x人

  5x+80=200

  5x=160

  x=32

  平均每组32人

  8、食堂运来150千克大米,比运来的面粉的3倍少30千克.食堂运来面粉多少千克?

  食堂运来面粉x千克

  3x-30=150

  3x=180

  x=60

  食堂运来面粉60千克

  9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵.平均每行梨树有多少棵?

  平均每行梨树有x棵

  6x-52=20

  6x=72

  x=12

  平均每行梨树有12棵

  10、一块三角形地的面积是840平方米,底是140米,高是多少米?

  高是x米

  140x=840*2

  140x=1680

  x=12

  高是12米
  七年级数学上应用题精选带答案:11-20题
  11、李师傅买来72米布,正好做20件大人衣服和16件 儿童 衣服.每件大人衣服用2.4米,每件儿童衣服用布多少米?

  每件儿童衣服用布x米

  16x+20*2.4=72

  16x=72-48

  16x=24

  x=1.5

  每件儿童衣服用布1.5米

  12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁?

  女儿今年x岁

  30=6(x-3)

  6x-18=30

  6x=48

  x=8

  女儿今年8岁

  13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车?

  需要x时间

  50x=40x+80

  10x=80

  x=8

  需要8时间

  14、小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵0.5元,苹果和梨每千克各多少元?

  苹果x

  3x+2(x-0.5)=15

  5x=16

  x=3.2

  苹果:3.2

  梨:2.7

  15、甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点.甲几小时到达中点?

  甲x小时到达中点

  50x=40(x+1)

  10x=40

  x=4

  甲4小时到达中点

  16、甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇.如果甲从A地,乙从B地同时出发,同向而行,那么4小时后甲追上乙.已知甲速度是15千米/时,求乙的速度.

  乙的速度x

  2(x+15)+4x=60

  2x+30+4x=60

  6x=30

  x=5

  乙的速度5

  17.两根同样长的绳子,第一根剪去15米,第二根比第一根剩下的3倍还多3米.问原来两根绳子各长几米?

  原来两根绳子各长x米

  3(x-15)+3=x

  3x-45+3=x

  2x=42

  x=21

  原来两根绳子各长21米

  18.某校买来7只 篮球 和10只足球共付248元.已知每只篮球与三只足球价钱相等,问每只篮球和足球各多少元?

  每只篮球x

  7x+10x/3=248

  21x+10x=744

  31x=744

  x=24

  每只篮球:24

  每只足球:8

  18小明家中的一盏灯坏了,现想在两种灯裏选购一种,其中一种是11瓦(即0.011千瓦)的节能灯,售价60元;另一种是60瓦(即0.06千瓦)的白灯,售价3元,两种灯的照明效果一样,使用寿命也相同.节能灯售价高,但是较省电;白灯售价低,但是用电多.如果电费是1元/(千瓦时),即1度电1元,试根据课本第三章所学的知识内容,给小明意见,可以根据什麼来选择买哪一种灯比较合理?

  参考资料:

  (1) 1千瓦=1000瓦

  (2) 总电费(元)=每度电的电费(元/千瓦时)X灯泡功率(千瓦)X使用时间(小时)

  (3) 1度电=1千瓦连续使用1小时

  假设目前电价为1度电要3.5元

  如果每只电灯泡功率为21瓦,每小时用电则为0.021度.

  每小时电费= 3.5元 X 0.021 =0.0735元

  每天电费=0.0735 X 24小时 =1.764元

  每月电费=1.764 X 30天 =52.92元

  这是一个简单的一元一次方程的求解平衡点问题,目标是从数个决策中找出各个平衡点,从不同的平衡点选择中来找出较优的决策.

  解答过程:

  设使用时间为A小时,

  1*0.011*A+60=1*0.06*A+3

  这个方程的意义就是,当使用节能灯和白灯的时间为A小时的时候,两种灯消耗的钱是相同的.解方程.

  A=1163.265小时

  也就是说当灯泡可以使用1163.265小时即48.47天的时候两个灯泡所花费的钱的一样多的.

  那么如果灯泡寿命的时间是48.47天以下,那么白灯比较经济,寿命是48.47天以上,节能灯比较经济.

  19为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.43元收费;如果超过140度,超过部分按每度0.57元收费.若墨用电户四月费的电费平均每度0.5元,问该用电户四月份应缴电费多少元?

  设总用电x度:/x=0.5

  0.57x-79.8+60.2=0.5x

  0.07x=19.6

  x=280

  再分步算: 140*0.43=60.2

  (280-140)*0.57=79.8

  79.8+60.2=140

  19某大商场家电部送货人员与销售人员人数之比为1:8.今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货.结果送货人员与销售人数之比为2:5.求这个商场家电部原来各有多少名送货人员和销售人员?

  设送货人员有X人,则销售人员为8X人.

  (X+22)/(8X-22)=2/5

  5*(X+22)=2*(8X-22)

  5X+110=16X-44

  11X=154

  X=14

  8X=8*14=112

  这个商场家电部原来有14名送货人员,112名销售人员

  20现对某商品降价10%促销,为了使销售金额不变,销售量要比按原价销售时增加百分之几?

  设:增加x%

  90%*(1+x%)=1

  解得: x=1/9

  所以,销售量要比按原价销售时增加11.11%
  七年级数学上应用题精选带答案:21-29题
  21甲.乙两种商品的原单价和为100元,因市场变化,甲商品降10%,乙商品提价5%调价后两商品的单价和比原单价和提高2%,甲.乙两商品原单价各是多少/

  设甲商品原单价为X元,那么乙为100-X

  (1-10%)X+(1+5%)(100-X)=100(1+2%)

  结果X=20元 甲

  100-20=80 乙

  22甲车间人数比乙车间人数的4/5少30人,如果从乙车间调10人到甲车间去,那么甲车间的人数就是乙车间的3/4.求原来每个车间的人数.

  设乙车间有X人,根据总人数相等,列出方程:

  X+4/5X-30=X-10+3/4(X-10)

  X=250

  所以甲车间人数为250*4/5-30=170.

  说明:

  等式左边是调前的,等式右边是调后的

  23甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都均速前进,以知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A.B两地间的路程?(列方程)

  设A,B两地路程为X

  x-(x/4)=x-72

  x=288

  答:A,B两地路程为288

  24甲、乙两车长度均为180米,若两列车相对行驶,从车头相遇到车尾离开共12秒;若同向行驶,从甲车头遇到乙车尾,到甲车尾超过乙车头需60秒,车的速度不变,求甲、乙两车的速度.

  二车的速度和是:/12=30米/秒

  设甲速度是X,则乙的速度是30-X

  180*2=60

  X=18

  即甲车的速度是18米/秒,乙车的速度是:12米/秒

  25两根同样长的蜡烛,粗的可燃3小时,细的可燃8/3小时,停电时,同时点燃两根蜡烛,来电时同时吹灭,粗的是细的长度的2倍,求停电的时间.

  设停电的时间是X

  设总长是单位1,那么粗的一时间燃1/3,细的是3/8

  1-X/3=2

  X=2.4

  即停电了2.4小时.

  26.甲、乙两车长度均为180米,若两列车相对行驶,从车头相遇到车尾离开共12秒;若同向行驶,从甲车头遇到乙车尾,到甲车尾超过乙车头需60秒,车的速度不变,求甲、乙两车的速度.

  27.两根同样长的蜡烛,粗的可燃3小时,细的可燃8/3小时,停电时,同时点燃两根蜡烛,来电时同时吹灭,粗的是细的长度的2倍,求停电的时间.

  注意:说明理由!

  列一元一次方程解!

  二车的速度和是:/12=30米/秒

  设甲速度是X,则乙的速度是30-X

  180*2=60

  X=18

  即甲车的速度是18米/秒,乙车的速度是:12米/秒

  补充回答:

  设停电的时间是X

  设总长是单位1,那么粗的一时间燃1/3,细的是3/8

  1-X/3=2

  X=2.4

  即停电了2.4小时.

  28已知某服装厂现在有A布料70M,B布料52M,现计划用这两种布料生产M.N的服装80套.已知做一套M服装用A料0.6M,B料0.9M,做一套N服装工用A料1.1M,B 料0.4M

  1)设生产M服装X件,写出关于X的不等式组

  2)有哪几种符合题意的生产方案?

  3)若做一套M服装可获利45元,N服装获利50元,问:那种 射击 方案可使厂获利最大?利润是多少?

  1).设生产M服装X件

  0.6x+1.1(80-x)≤70 ①

  0.9x+0.4(80-x)≤52 ②

  解得①x≥36

  ②x≤40 即36≤x≤40

  2).方案一:M服装36套 N服装44套

  方案二:M服装37套 N服装43套

  方案三:M服装38套 N服装42套

  方案四:M服装39套 N服装41套

  方案五:M服装40套 N服装40套

  3).方案一:45×36+50×44=3820(元)

  方案二:45×37+50×43=3815(元)

  方案三:45×38+50×42=3810(元)

  方案四:45×39+50×41=3805(元)

  方案五:45×40+50×40=3800(元)

  29小王家里装修,他去商店买灯,商店柜台里现有功率为100瓦的白炽灯和40瓦的节能灯,它们的单价分别为二元和三十二元,经了解,这两种灯的照明效果和使用寿命都一样.已知小王所在地的电价为每度0.5元,请问当这两种灯的使用寿命超过多长时间时,小王选择节能灯才合算? 《用电量(度)=功率(千瓦)x时间

  设时间为x小时时小王选择节能灯才合算:

  0.5*100/1000x+2》0.5*40/1000x+32

  0.5*0.1x+2》0.5*0.04x+32

  0.05x+2》0.02x+32

  0.05x-0.02x》32-2

  0.03x》30

  x》1000

  答:当这两种灯的使用寿命超过1000个小时时,小王选择节能灯才合算.

七年级数学上册期末测试题人教版

  到了初中,如果还想要提高七年级数学成绩的话,平时做试题就要多注意一些细节。以下是我为你整理的七年级数学上册期末测试题,希望对大家有帮助!

  七年级数学上册期末测试题

  一、选择题(每小题3分,共36分)

  1.下列方程中,是一元一次方程的是(  )

  A.x2-2x=4

  B.x=0

  C.x+3y=7

  D.x-1=

  2.下列计算正确的是(  )

  A.4x-9x+6x=-x

  B.a-a=0

  C.x3-x2=x

  D.xy-2xy=3xy

  3.数据1 460 000 000用科学记数法表示应是(  )

  A.1.46×107

  B.1.46×109

  C.1.46×1010

  D.0.146×1010

  4.用科学计算器求35的值,按键顺序是( )

  A.3,x■,5,= B.3,5,x■

  C.5,3,x■ D.5,x■,3,=

  5.

  在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,则∠AOB的大小为(  )

  A.69° B.111°

  C.159° D.141°

  6.一件衣服按原价的九折销售,现价为a元,则原价为(  )

  A.a B.a

  C.a D.a

  7.下列各式中,与x2y是同类项的是(  )

  A.xy2 B.2xy

  C.-x2y D.3x2y2

  8.若长方形的周长为6m,一边长为m+n,则另一边长为(  )

  A.3m+n

  B.2m+2n

  C.2m-n

  D.m+3n

  9.已知∠A=37°,则∠A的余角等于(  )

  A.37° B.53°

  C.63° D.143°

  10.将下边正方体的平面展开图重新折成正方体后,“董”字对面的字是(  )

  A.孝 B.感

  C.动 D.天

  11.若规定:-2x=5的解是(  )

  A.7 B.-7

  C.- D.

  12.同一条直线上有若干个点,若构成的射线共有20条,则构成的线段共有(  )

  A.10条 B.20条

  C.45条 D.90条

  二、填空题(每小题4分,共20分)

  13.已知多项式2mxm+2+4x-7是关于x的三次多项式,则m=   .

  14.在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯?”(倍加增指从塔的顶层到底层).则塔的顶层有    盏灯.

  15.如图,点B,C在线段AD上,M是AB的中点,N是CD的中点.若MN=a,BC=b,则AD的长是          .

  16.瑞士中学教师巴尔末成功地从光谱数据,…中得到巴尔末公式,从而打开了光谱奥妙的大门.请你按这种规律写出第七个数据是     .

  17.如图,现用一个矩形在数表中任意框出a b

  c d4个数,则

  (1)a,c的关系是         ;

  (2)当a+b+c+d=32时,a=     .

  三、解答题(共64分)

  18.(24分)(1)计算:-12 016-;

  (2)解方程:=1;

  (3)先化简,再求值:

  a2b-5ac-(3a2c-a2b)+(3ac-4a2c),其中a=-1,b=2,c=-2.

  19.(8分)解方程:14.5+(x-7)=x+0.4(x+3).

  20.(8分)如图,O为直线BE上的一点,∠AOE=36°,OC平分∠AOB,OD平分∠BOC,求∠AOD的度数.

  21.(8分)某项工程,甲单独做需20天完成,乙单独做需12天完成,甲、乙二人合做6天以后,再由乙继续完成,乙再做几天可以完成全部工程?

  22.(8分)一位商人来到一个新城市,想租一套房子,A家房主的条件是:先交2 000元,然后每月交租金380元,B家房主的条件是:每月交租金580元.

  (1)这位商人想在这座城市住半年,那么租哪家的房子合算?

  (2)这位商人住多长时间时,租两家房子的租金一样?

  23.(8分)阅读下面的材料:

  高斯上小学时,有一次数学老师让同学们计算“从1到100这100个正整数的和”.许多同学都采用了依次累加的计算方法,计算起来非常烦琐,且易出错.聪明的小高斯经过探索后,给出了下面漂亮的解答过程.

  解:设S=1+2+3+…+100, ①

  则S=100+99+98+…+1. ②

  ①+②,得

  2S=101+101+101+…+101.

  (①②两式左右两端分别相加,左端等于2S,右端等于100个101的和)

  所以2S=100×101,

  S=×100×101. ③

  所以1+2+3+…+100=5 050.

  后来人们将小高斯的这种解答方法概括为“倒序相加法”.

  解答下面的问题:

  (1)请你运用高斯的“倒序相加法”计算:1+2+3+…+101.

  (2)请你认真观察上面解答过程中的③式及你运算过程中出现类似的③式,猜想:

  1+2+3+…+n=        .

  (3)请你利用(2)中你猜想的结论计算:1+2+3+…+1 999.

  七年级数学上册期末测试题答案

  一、选择题

  1.B 选项A中,未知数的最高次数是二次;选项C中,含有两个未知数;选项D中,未知数在分母上.故选B.

  2.B 选项A中,4x-9x+6x=x;选项C中,x3与x2不是同类项,不能合并;选项D中,xy-2xy=-xy.故选B.

  3.B 4.A 5.D

  6.B 由原价×=现价,得

  原价=现价÷=现价×.

  7.C

  8.C 另一边长=×6m-(m+n)=3m-m-n=2m-n.

  9.B 10.C

  11.C 根据题意,得=-4,

  所以3×(-4)-2x=5,解得x=-.

  12.C 由构成的射线有20条,可知这条直线上有10个点,所以构成的线段共有=45条.

  二、填空题

  13.1 由题意得m+2=3,解得m=1.

  14.3

  15.2a-b AM+ND=MB+CN=a-b,AD=AM+ND+MN=a-b+a=2a-b.

  16. 这些数据的分子为9,16,25,36,分别是3,4,5,6的平方,

  所以第七个数据的分子为9的平方是81.

  而分母都比分子小4,所以第七个数据是.

  17.(1)a+5=c或c-a=5 (2)5 (1)a与c相差5,所以关系式是a+5=c或c-a=5.

  (2)由数表中数字间的关系可以用a将其他三个数都表示出来,分别为a+1,a+5,a+6;当a+b+c+d=32时,有a+a+1+a+5+a+6=32,解得a=5.

  三、解答题

  18.解:(1)原式=-1-(45-64)=-1+19=18.

  (2)2(2x+1)-(10x+1)=6,

  4x+2-10x-1=6,

  4x-10x=6-2+1,

  -6x=5,x=-.

  (3)a2b-5ac-(3a2c-a2b)+(3ac-4a2c)

  =a2b-5ac-3a2c+a2b+3ac-4a2c

  =a2b-2ac-7a2c.

  当a=-1,b=2,c=-2时,原式=×(-1)2×2-2×(-1)×(-2)-7×(-1)2×(-2)=3-4+14=13.

  19.解:(x-7)=x+(x+3).

  15×29+20(x-7)=45x+12(x+3).

  435+20x-140=45x+12x+36.

  20x-45x-12x=36-435+140.

  -37x=-259.解得x=7.

  20.解:因为∠AOE=36°,所以∠AOB=180°-∠AOE=180°-36°=144°.

  又因为OC平分∠AOB,

  所以∠BOC=∠AOB=×144°=72°.

  因为OD平分∠BOC,

  所以∠BOD=∠BOC=×72°=36°.

  所以∠AOD=∠AOB-∠BOD=144°-36°=108°.

  21.解:设乙再做x天可以完成全部工程,则

  ×6+=1,解得x=.

  答:乙再做天可以完成全部工程.

  22.解:(1)A家租金是380×6+2000=4280(元).

  B家租金是580×6=3480(元),所以租B家房子合算.

  (2)设这位商人住x个月时,租两家房子的租金一样,则380x+2000=580x,解得x=10.

  答:租10个月时,租两家房子的租金一样.

  23.解:(1)设S=1+2+3+…+101, ①

  则S=101+100+99+…+1. ②

  ①+②,得2S=102+102+102+…+102.

  (①②两式左右两端分别相加,左端等于2S,右端等于101个102的和)

  ∴2S=101×102.∴S=×101×102.

  ∴1+2+3+…+101=5151.

  (2)n(n+1)

  (3)∵1+2+3+…+n=n(n+1),

  ∴1+2+3+…+1998+1999

  =×1999×2000=1999000.

七年级数学上册应用题及答案20道!!!!!!!!!!!!!

1.有一根铁丝,第一次用去了他的一半少1米,第二次用去了剩余铁丝的一半还多1米,结果这根铁丝还剩余2.5米,问这根铁丝原来长多少米?
2.将内径为200mm的圆柱形水桶中的满桶水倒入一个内部长\宽\高分别为300mm.300mm.80mm的长方形铁盒中,正好倒满,求圆柱形水桶中的水高?
3.列车在中途受阻,耽误了6分钟,然后将时速由原来的每小时40千米提高到每小时50千米,问这样走多少千米,就可以将耽误的时间补上?
4.某学校七年级(1)班组织课外活动,准备举行一次羽毛球比赛,去商店购买羽毛球拍和羽毛球,每副球拍25元,每只球2元,甲商店说:“羽毛球及球拍都打9折优惠“,乙商店说“买一副球拍赠送2只羽毛球,(1)学校准备花90元钱全部用于买2副羽毛球拍及羽毛球若干只,问到哪家商店购买更合算?(2)若必须买2副羽毛球拍,则应当买多少只羽毛球时到两家商店才一样合算?
5.甲\乙\丙三位同学向贫困地区的少年儿童捐赠图书,已知这三位同学捐赠图书的册数的比是5:6:9 ,如果甲\丙两位同学捐书册数的和是乙捐书册数的2倍还多12册,那么他们各捐书多少册?
参考答案:
1.解设:这根铁丝原来长X米。
X-=2.5
X=4
2.解设:高为Xmm
100·100·Л·X=300·300·80
X=720Л
3.解设:走X千米
X/50=/40
X= 20
4.甲:打9折后球拍为:22.5元/只 球为1.8元/只
球拍22.5·2=45元 球:(90-45)÷1.8=25(只)
乙: 25·2=50(元){送两只球}
需要买的球:(90-50)÷2=20(只)
一共的球:20+2=22(只)
甲那里可以买25只,而乙只能买22只.
所以,甲比较合算.
5.解设:每份为X
甲:5X 乙:6X 丙:9X
5X+9X=6X·2+12
X=6
所以:甲:5·6=30(本)
乙:6·6=36(本)
丙:9·6=54(本)1.某中学修整草场,如果让初一学生单独工作,需要7.5小时完成;如果让初二学生单独做,需要5小时完成.如果让初一、初二学生一起工作1小时,再由初二学生单独完成剩余部分,共需多少时间完成?
设初二学生还要工作x小时。
(1/7.5)+(1/5)x=1
x=10/3
共需10/3+1=4又1/3小时
2.甲骑车从A地到B地,乙骑车从B地到A地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人相距36千米,到中午12时,两人又相距36千米.求AB两地路程.
设:AB距离为X,12时-10时=2小时,10时-8时=2小时
2*=X-36
第一个2是8时到10时,共2小时
36*2是10时到12时有两次相距36千米,即两小时二人共走36*2千米
(36*2)/2就求出二人一小时共走多少千米,即二人速度和
根据“以知两人在上午8时同时出发,到上午10时,两人还相距36千米”这句话列出方程
结果
X=108
答:AB两地相距108千米
3一列火车从甲地开往乙地,每小时行90千米,行到一半时耽误了12分钟,当着列火车每小时加快10千米后,恰好按时到了乙地,求甲、乙两站距离?
解:设甲、乙两站距离为S千米,则有:
S/90=(S/2)/90+12/60+(S/2)/(90+10)
解得:S=360(千米)
答:甲乙两地距离为360千米。
4小明到外婆家去,若每小时行5千米,正好按预定时间到达,他走了全程的五分之一时,搭上了一辆每小时行40千米的汽车,因此比预定时间提前1小时24分钟到达,求小明与他外婆家的距离是多少千米
.解:设小明与他外婆家的距离为S千米,则有:
S/5=(S/5)/5+(4S/5)/40+(1+24/60)
解得:S=10(千米)
答:小明与他外婆家的距离为10千米
5桥上用绳子测桥高,把绳子对折后垂到水面时,尚余8尺。绳子折三折后垂到水面上尚余2尺,求桥高和绳长。
设桥高X 则方程为2(X+8)=3(X+2) 解得X=10 则桥高10尺 绳长为36尺
6两个连续的奇数和是40,这两个奇数分别是几?
设前一个奇数为X 则得方程 X+(X+2)=40 解得X=19,则一奇数为19 另一奇数为21
7某工厂有三个车间,第一车间占1/4,第二车间是第三车间的3/4,第一车间比第三车间少40人,三个车间共多少人?
设总人数为X 则第一车间人数为X/4 第二车间与第三车间总人数为(3X/4) 所以根据第二车间与第三车间的关系得知第三车间的人数为(3X/7)所以的方程:(3X/7)-(X/4)=40 解得X=224
8一项水利工程,甲队单独完成需要15天,乙队单独完成需要12天,若两队合作5天完成,剩下的工程由甲队做,甲队还需多少天才能完成?
解:设甲队还需x天才能完成。
5(1/15+1/12)+1/15x=1
3/4+1/15x =1
1/15x =1-3/4
x =15/4
9在甲处劳动的有31人,在乙处劳动的有20人,现调来18人支援,要使甲处劳动的人是乙处劳动的人数的2倍,应往甲.乙两处各调去多少人?
设调后甲的人数为X。乙为1/2X。
(X-31)+(1/2X-20)=18
X-31+1/2X-20=18
3/2X=69
X=46
X-31=15 1/2X-20=3
所以应往甲处调15人,应往乙处调3人。
10一只猴子有一堆桃子,第一天他吃了 桃子总数的二分之一 加一个,第二天吃了 剩下的二分之一加一个,第三天又吃了剩下的二分之一加一个 正好把这堆桃子吃完,请问这堆桃子一共有多少个?
解:设有X个桃子
X-(X-1\2X+1)-(X-2\1X+1)×1\2-(X-1\2X+1)×1\2×1\2=0
X=14
11一队学生去校外进行军事野营训练,他们以每小时三千米的速度行走,走了十八分的时候,学校要将一个紧急通知选给队长,通讯员从学校出发,骑自行车以十四千米每小时的速度按原路追上,通讯员用几小时可以追上学生队伍?
设通讯员用x小时可以追上学生队伍
3*(18/60)+3x=14x
x=9/110小时
12某工人原计划用26天生产一批零件,工作2天后,因改变操作方法,每天比原来多生产5个零件,结果提前4天完成任务,问原来每天生产多少个零件?这批零件一共多少个?
原来每天生产x个零件
26x=2x+(26-4-2)(x+5)
x=25
这批零件共=25*26=650
13一个游泳池有两个进水管A和B,和一个排水管C,单开A管3h可以住满水池,单开B管4h可以住满水池,单开C管6h可以放完一池水,若A管先单独开放半小时,B和C两管一同打开,问需要再过多少时间可以注入半池水?
设需要再过x小时可以注入半池水
(1/2+x)*1/3+1/4*x-1/6*x=1/2
x=0.8
0.8*60=48分钟
14学校举办“迎奥运”知识竞赛,设一.二.三等奖共12名,奖品发放方案如下:一等奖,一和福娃和一枚徽章。二等奖:一盒福娃。三等奖:一枚徽章。用于购买奖品的总费用为1020,小明在购买“福娃”和徽章前,了解到如下信息:两盒福娃与1枚徽章共315元。1盒福娃与3枚徽章共195元。1.求一盒福娃和一枚徽章各多少元?2.若本次活动设一等奖2名,则二等奖和三等奖应各设多少名?
设一盒福娃x元一枚徽章y元
得到方程组 2x+y=315 x+3y=195
x= 150 y=15
设二等奖a名 三等奖(10-a)名
165*2+150a+15(10-a)=1020
a=4
二等奖4名和三等奖6名
15小红撕下二月份的3张日历,每两张的日期之和分别是27,28,29,你能说出这三张日历的日期分别是什么吗?
设最小的一张为X,由于每两张的日期之和分别是27,28.29.所以这三张是连续的.所以有
X+(X+1)=27
得X=13
16小明和爸爸的年龄和是52岁,7年后爸爸的年龄是小明年龄的2倍多6岁,求小明今年的年龄?
.设小明今年的年龄为X岁.
则(2X+6-7)+(X-7)=52
得X=20
17某工程,甲单独做12天完成,乙单独做8天完成,现在由甲先做2天,乙再参加合作,求完成这项工程还需几天?
设还要X天则有方程:2/12+(1/12+1/8)*X=1
18侑一项工程,甲队独做需要10天完成,乙队独做需要30天完成.现在甲,乙两队合作完成这项工程,已知甲队休息了2天,乙队休息了8天,但甲乙两队没有再同一天休息过,那么两队共同工作了多少天?
设共同工作了X天则有方程:2/30+8/10+(1/10+1/30)*X=1
19学校组织植树活动,已知在甲处植树的有27人,在乙处植树的有18人.如果要使在甲处植树的人数是乙处植树人数的2倍,需要从乙队调多少人到甲队?
解 设应调往甲处 人,根据题意,得27+ =2(18- ).解这个方程,得 =3.
答:从乙处调3人到甲处.
20学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人.现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍多2人,应调往甲、乙两处各多少人?
解 设应调往甲处 人,根据题意,得27+ =2(18+20- )+2.解这个方程,得 =17.∴20- =3.答:应调往甲处17人,乙处3人.

学年七年级上册数学期中测试题

  一、选择题:(每题只有一个结论是正确的,每小题3分,共24分)

  1.下列说法正确的是( )

  ①0是绝对值最小的有理数;     ②相反数大于本身的 数是负数;

  ③数轴上原点两侧的数互为相反数;  ④两个数比较,绝对值大的反而小.

  A.①② B.①③ C.①②③ D.①②③④

  2.据相关报道,截止到今年四月,我国已完成5.78万个农村教学点的建设任务.5.78万可用科学记数法表示为(  )

  A 5.78×103 B.57.8×103 C.0.578×104 D.5.78×104

  3.下列各组算式中,运算结果最小的是(   )

  A. B. C. D.

  4.下列各对数中,数值相等的是( )

  A. 与 B. 与

  C. 与 D. 与

  5.单项式 系数与次数的和是( )

  A.0 B.1 C.-1 D.5

  6.已知实数 满足 则多项式 的值为( )A. 1 B. -1 C. 0 D. 2

  7.下列说法错误的是(  )

  A. 是一个单项式 B. 是一个多项式

  C. 是一个代数式 D. 是一个整式

  8. 一个两位数,个位上的数是 ,十位上的’数是 ,交换个位与十位上的数字得到一个新的两位数,则这两个两位数的和是(  )

  A. B. C. D.

  二、填空题(每小题3分,共18分)

  9. 某旅游景点11月5日的最高气温为8℃,最低气温为 ℃,那么该景点这天的温差是____℃.

  10. 已知P是数轴上的一点 ,把P点向左移动 个单位后再向右移动 个单位长度,那么P点表示的数是_____.

  11. 计算1-2+3-4+5-6+…+2011-2012的值是______.

  12.如果 =1时,代数式 的值是5,那么 =-1时代数式 的值___.

  13. 一个长方形的周长为24 cm.如果宽增加2 cm,就可成为一个正方形.则这个长方形的宽为 .

  14. 公共汽车上原有 名乘客,中途下车一半,后来又上来 名乘客,这时公共汽车上共有乘客 名.

  三、解答题:(本题共3个小题,每小题每题6分,共18分)

  15.计算:

  16.计算:

  17.合并同类项:

  四、解答题:(本题共3个小题,每小题8分,共24分)

  18. 先化简,再求值: ,其中 .

  19.如图,当 , 时,求阴影部分的周长和面积.

  20.从176.4 的高处有一石头由静止开始自由下落,石头下落的高度 与时间 有面的关系:

  时间

  高度

  (1)写出用时间 表示下落高度 的公式;

  (2)当 时,求石头下落的高度.

  五、解答题:(本题共10分)

  22.为了节约水资源,某市制定了居民用水收费标准.规定每户每月用水不超过8立方米,每立方米收费1.3元;每户每月超过8立方米,超过部分每立方米收费2.8元.

  (1)设某户某月用水x立方米,分别写出当0

  (2)小杰家2006年12月份用水23立方米,问小杰家12月份应交水费多少元?

  七年级数学期中检测题参考答案

  一、选择题:(每小题3分,共24分)

  1.A;2. D ;3.A 4.A ;5.B ;6. B ; 7.A ;8.C

  二、填空题(每小题3分,共18分)

  9.10 ;10.-6 ;11.-1 006; 12.3 ;13.5 cm ; 14.

  三、解答题:(本题共3个小题,每小题每题7分,共21分)

  15. =-4

  16.

  .

  17.

  四、解答题:(本题共3个小题,每小题9分,共27分)

  18.解:原式= ,

  当 时, 原式=27

  19.解:阴影部分的周长为 ;

  阴影部分的面积为 .

  20.(1)

  (2) 时,

  五、解答题:(本题共10分)

  21.解:(1)当0

  当x》8时,应交水费为元或(2.8x-12)元;

  (2)当x=23时,2.8x-12=2.8×23-12=52.4(元).

  答:小杰家12月份应交水费52.4元.

七年级上册数学难题100题,要有答案的

1.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?
2.兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?
3.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米, ≈3.14).
4.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.
5.有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?
6.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,求这一天有几个工人加工甲种零件.
7.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.
(1)某户八月份用电84千瓦时,共交电费30.72元,求a.
(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦?应交电费是多少元?
8.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.
(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.
(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?
答案
1.解:设甲、乙一起做还需x小时才能完成工作.
根据题意,得 × +( + )x=1
解这个方程,得x=
=2小时12分
答:甲、乙一起做还需2小时12分才能完成工作.
2.解:设x年后,兄的年龄是弟的年龄的2倍,
则x年后兄的年龄是15+x,弟的年龄是9+x.
由题意,得2×(9+x)=15+x
18+2x=15+x,2x-x=15-18
∴x=-3
答:3年前兄的年龄是弟的年龄的2倍.
(点拨:-3年的意义,并不是没有意义,而是指以今年为起点前的3年,是与3年后具有相反意义的量)
3.解:设圆柱形水桶的高为x毫米,依题意,得
·( )2x=300×300×80
x≈229.3
答:圆柱形水桶的高约为229.3毫米.
4.解:设第一铁桥的长为x米,那么第二铁桥的长为(2x-50)米,过完第一铁桥所需的时间为 分.
过完第二铁桥所需的时间为 分.
依题意,可列出方程
+ =
解方程x+50=2x-50
得x=100
∴2x-50=2×100-50=150
答:第一铁桥长100米,第二铁桥长150米.
5.解:设这种三色冰淇淋中咖啡色配料为2x克,
那么红色和白色配料分别为3x克和5x克.
根据题意,得2x+3x+5x=50
解这个方程,得x=5
于是2x=10,3x=15,5x=25
答:这种三色冰淇淋中咖啡色、红色和白色配料分别是10克,15克和25克.
6.解:设这一天有x名工人加工甲种零件,
则这天加工甲种零件有5x个,乙种零件有4(16-x)个.
根据题意,得16×5x+24×4(16-x)=1440
解得x=6
答:这一天有6名工人加工甲种零件.
7.解:(1)由题意,得
0.4a+(84-a)×0.40×70%=30.72
解得a=60
(2)设九月份共用电x千瓦时,则
0.40×60+(x-60)×0.40×70%=0.36x
解得x=90
所以0.36×90=32.40(元)
答:九月份共用电90千瓦时,应交电费32.40元.
8.解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,
设购A种电视机x台,则B种电视机y台.
(1)①当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程
1500x+2100(50-x)=90000
即5x+7(50-x)=300
2x=50
x=25
50-x=25
②当选购A,C两种电视机时,C种电视机购(50-x)台,
可得方程1500x+2500(50-x)=90000
3x+5(50-x)=1800
x=35
50-x=15
③当购B,C两种电视机时,C种电视机为(50-y)台.
可得方程2100y+2500(50-y)=90000
21y+25(50-y)=900,4y=350,不合题意
由此可选择两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,C种电视机15台.
(2)若选择(1)中的方案①,可获利
150×25+250×15=8750(元)
若选择(1)中的方案②,可获利
150×35+250×15=9000(元)
9000》8750 故为了获利最多,选择第二种方案.

七年级上册数学经典习题

2.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值.
3.若m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n, 求x的取值范围.
4.设(3x-1)7=a7x7+a6x6+…+a1x+a0,试求a0+a2+a4+a6的值.
5.已知方程组
有解,求k的值.
6.解方程2|x+1|+|x-3|=6.
7.解方程组
8.解不等式||x+3|-|x-1||>2.
9.比较下面两个数的大小:
10.x,y,z均是非负实数,且满足:
x+3y+2z=3,3x+3y+z=4,
求u=3x-2y+4z的最大值与最小值.
11.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式.
12.如图1-88所示.小柱住在甲村,奶奶住在乙村,星期日小柱去看望奶奶,先在北山坡打一捆草,又在南山坡砍一捆柴给奶奶送去.请问:小柱应该选择怎样的路线才能使路程最短?
13.如图1-89所示.AOB是一条直线,OC,OE分别是∠AOD和∠DOB的平分线,∠COD=55°.求∠DOE的补角.
14.如图1-90所示.BE平分∠ABC,∠CBF=∠CFB=55°,∠EDF=70°.求证:BC‖AE.
15.如图1-91所示.在△ABC中,EF⊥AB,CD⊥AB,∠CDG=∠BEF.求证:∠AGD=∠ACB.
16.如图1-92所示.在△ABC中,∠B=∠C,BD⊥AC于D.求
17.如图1-93所示.在△ABC中,E为AC的中点,D在BC上,且BD∶DC=1∶2,AD与BE交于F.求△BDF与四边形FDCE的面积之比.
18.如图1-94所示.四边形ABCD两组对边延长相交于K及L,对角线AC‖KL,BD延长线交KL于F.求证:KF=FL.
19.任意改变某三位数数码顺序所得之数与原数之和能否为999?说明理由.
20.设有一张8行、8列的方格纸,随便把其中32个方格涂上黑色,剩下的32个方格涂上白色.下面对涂了色的方格纸施行“操作”,每次操作是把任意横行或者竖列上的各个方格同时改变颜色.问能否最终得到恰有一个黑色方格的方格纸?
21.如果正整数p和p+2都是大于3的素数,求证:6|(p+1).
22.设n是满足下列条件的最小正整数,它们是75的倍数,且恰有
23.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包括每个人的两条腿),问房间里有几个人?
24.求不定方程49x-56y+14z=35的整数解.
25.男、女各8人跳集体舞.
(1)如果男女分站两列;
(2)如果男女分站两列,不考虑先后次序,只考虑男女如何结成舞伴.
问各有多少种不同情况?
26.由1,2,3,4,5这5个数字组成的没有重复数字的五位数中,有多少个大于34152?
27.甲火车长92米,乙火车长84米,若相向而行,相遇后经过1.5秒(s)两车错过,若同向而行相遇后经6秒两车错过,求甲乙两火车的速度.
28.甲乙两生产小队共同种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.若甲单独完成比乙单独完成全部任务快3天.求甲乙单独完成各用多少天?
29.一船向相距240海里的某港出发,到达目的地前48海里处,速度每小时减少10海里,到达后所用的全部时间与原速度每小时减少4海里航行全程所用的时间相等,求原来的速度.
30.某工厂甲乙两个车间,去年计划完成税利750万元,结果甲车间超额15%完成计划,乙车间超额10%完成计划,两车间共同完成税利845万元,求去年这两个车间分别完成税利多少万元?
31.已知甲乙两种商品的原价之和为150元.因市场变化,甲商品降价10%,乙商品提价20%,调价后甲乙两种商品的单价之和比原单价之和降低了1%,求甲乙两种商品原单价各是多少?
32.小红去年暑假在商店买了2把儿童牙刷和3支牙膏,正好把带去的钱用完.已知每支牙膏比每把牙刷多1元,今年暑假她又带同样的钱去该商店买同样的牙刷和牙膏,因为今年的牙刷每把涨到1.68元,牙膏每支涨价30%,小红只好买2把牙刷和2支牙膏,结果找回4角钱.试问去年暑假每把牙刷多少钱?每支牙膏多少钱?
33.某商场如果将进货单价为8元的商品,按每件12元卖出,每天可售出400件,据经验,若每件少卖1元,则每天可多卖出200件,问每件应减价多少元才可获得最好的效益?
34.从A镇到B镇的距离是28千米,今有甲骑自行车用0.4千米/分钟的速度,从A镇出发驶向B镇,25分钟以后,乙骑自行车,用0.6千米/分钟的速度追甲,试问多少分钟后追上甲?
35.现有三种合金:第一种含铜60%,含锰40%;第二种含锰10%,含镍90%;第三种含铜20%,含锰50%,含镍30%.现各取适当重量的这三种合金,组成一块含镍45%的新合金,重量为1千克.
(1)试用新合金中第一种合金的重量表示第二种合金的重量;
(2)求新合金中含第二种合金的重量范围;
(3)求新合金中含锰的重量范围.
05~06学年度(上)七年级期中考试
数 学 试 卷
一、填空题(每小题2分,共26分)
1、│-7│=7
2、 -7的倒数是-(1/7)
3、0.519精确到百分位的近似值数为0.52
4、计算:(-1)2006 =-2006
5、(-7.5)+6.9 =-0.6
6、-5的相反数是5
7、用科学计数法表示:457100 =4.571x10的5次方
8、在数轴上到表示1的点的距离等于3的点所表示的数是4或-2
9、已知m<0,则
10、如果x 2 = 4,那么x =2
11、比较大小:-3 小于-2.
12、若x = 4是方程ax-2x = 4的解,则a =3
13、已知: ,则 .
二、选择题(每小题3分,共15分)
14、下列近似数中,有四个有效数字的数是………………………( )
(A)0.0320 (B)0.0032 (C)0.3200 (D)0.0302
15、下列说法中,正确的是…………………………………………( )
(A) 正数和负数统称为有理数
(B) 互为相反数的两个数之和为零
(C) 如果两个数的绝对值相等,那么这两个数一定相等
(D) 0是最小的有理数
17、足球比赛的计分规则为胜一场得3分;平一场得1分;负一 场得0分,
某队打14场,负5场,得19分,那么这个队胜……………( )
(A)3场 (B)4场 (C)5场 (D)6场
18、两个数之和为负,积为正。则这两个数是 ……………………( )
(A) 同为负数 (B)同为正数 (C)一正一负 (D)有一个是0
三、计算下列各题(每小题5分,共20分)
19、9+(-2)-10-(-8) 20、∣-48∣÷8-(-4)×
21、-2 4+(-75)÷(-5)2-(-4)×(-3)
26、观察下列各式:
1 3 =1 2
1 3+2 3 =3 2
1 3+2 3+3 3 = 6 2
1 3+2 3+3 3+4 3 = 10 2
…………………………
根据上述的规律,写出第7个算式:
27、股民小李上星期五买进某公司股票1000股,每股27元,下表为本周内每日该
股票的涨跌情况(单位:元).
星 期 一 二 三 四 五
每股涨跌 +4 +4.5 -1 -2.5 -6
(1)星期三收盘时,每股是 元;
(2)本周内每股最高价 元,最低价 元;
(3)已知小李买进股票时付了1.5‰的手续费,卖出时还要付成交额1.5‰的手续费
和1‰的交易税,若小李在星期五收盘时全部卖出股票,则他的盈亏情况如何?
六、列方程解应用题(8分)
28、某鱼场的甲仓库存鱼30吨,乙仓库存鱼40吨,现要再往这两个仓库运
送80吨鱼,使甲仓库的存鱼量为乙仓库存鱼量的1.5倍。应往甲仓库和乙仓库分
别运送多少吨鱼?
一次函数测试卷
一、填空:(30分)
1、已知矩形的周长为24,设它的一边长为x,那么它的面积y与x之间的函数关系式为________________.__________是常量,变量有__________________。
2、计划花500元购买篮球,所能购买的总数n(个)与单价a(元)的函数关系式为__________________,其中____________是自变量,__________是因变量.
3、函数 中,自变量x的取值范围是__________________.函数y=15-x中自变量x的取值范围是
4、以下函数:①y=2x2+x+1 ②y=2πr ③y= ④y=( -1)x
⑤y=-(a+x)(a是常数)是一次函数的有________________.
5、直线y=3-9x与x轴的交点坐标为__________,与y轴的交点坐标为________.
6、若直线y=kx+b平行直线y=3x+4,且过点(1,-2),则k= .
7、已知一次函数y =(m + 4)x + m + 2(m为整数)的图象不经过第二象限,则m = ;
8、一次函数y = kx + b的图象经过点A(0,2),B(-1,0)若将该图象沿着y轴向上平移2个单位,则新图象所对应的函数解析式是 ;
9、弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体的质量x(kg)有下列关系:
x 0 1 2 3 4 5 6 7 8
y 12 12.5 13 13.5 14 14.5 15 15.5 16
那么弹簧的总长y(cm)与所挂物体的质量x(kg)之间的函数关系式为 ;
二、选择(30分)
1、在同一直角坐标系中,对于函数:① y = – x – 1;② y = x + 1;③ y = – x +1;④y = – 2(x + 1)的图象,下列说法正确的是( )
A、通过点(– 1,0)的是①和③ B、交点在y轴上的是②和④
C、相互平行的是①和③ D、关于x轴对称的是②和③
2、已知函数y= ,当x=a时的函数值为1,则a的值为( )
A.3 B.-1 C.-3 D.1
3、函数y=kx的图象经过点P(3,-1),则k的值为( )
A.3 B.-3 C. D.-
4、下列函数中,图象经过原点的为( )
A.y=5x+1 B.y=-5x-1 C.y=- D.y=
5、点A(– 5,y1)和B(– 2,y2)都在直线y = – 12 x上,则y1与y2的关系是( )
A、y1≤y2 B、y1=y2 C、y1<y2 D、y1>y2
6、函数y = k(x – k)(k<0=的图象不经过( )
A、第一象限 B、第二象限 C、第三象限 D、第四象限
7、要从y= x的图像得到直线y= ,就要把直线y= x( )
(A)向上平移 个单位 (B)向下平移 个单位
(C)向上平移2个单位 (D)向下平移2个单位
8、一水池蓄水20 m3,打开阀门后每小时流出5 m3,放水后池内剩下的水的立方数Q (m3)与放水时间t(时)的函数关系用图表示为( )
9、已知一次函数y=kx+b,y随着x的增大而减小,且kb《0,则在直角坐标系内它的大致图象是( )
(A) (B) (C) (D)
10.星期天晚饭后,小红从家里出发去散步,图描述了她散步过程中离家s(米)与散步所用的时间t(分)之间的函数关系.依据图象,下面描述符合小红散步情景的是( )
(A) 从家出发,到了一个公共阅报栏,看了一会报后,就回家了.
(B)从家出发,一直散步(没有停留),然后回家了.
(C)从家出发,到了一个公共阅报栏,看了一会报后,
继续向前走了一会,然后回家了.
(D)从家出发,散了一会步,就找同学去了,18分钟后
才开始返回.
三、解答题:
1、一次函数y=kx+b的图象过点(-2,3)和(1,-3)
① 求k与b的值;②判定(-1,1)是否在此直线上?
2.已知一次函数 的图像平行于 ,且过点(2,-1),求这个一次函数的解析式。并画出该一次函数的图象。
3、某市出租车5㎞内起步价为8元,以后每增加1㎞加价1元,请写出乘坐出租车路程x㎞与收费y元的函数关系,并画出图象,小明乘了10㎞付了多少钱,如果小亮付了15元钱乘了几千米?
4、北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台。如果从北京运往汉口、重庆的运费分别是400元/台、800元/台,从上海运往汉口、重庆的运费分别是300元/台、500元/台。求:
(1)写出总运输费用与北京运往重庆x台之间的函数关系;
(2)若总运费为8400元,上海运往汉口应是多少台?

特别声明

本文仅代表作者观点,不代表本站立场,本站仅提供信息存储服务。

分享:

扫一扫在手机阅读、分享本文