本文目录
- 你好,请问在SPSS中如何实现马氏距离的计算
- 欧氏距离判别法,马氏距离判别法和Fisher判别法的优缺点有哪些
你好,请问在SPSS中如何实现马氏距离的计算
选择好一个因变量和一个自变量,然后点击Save,
然后在Distance项下勾选Mahalanobis就可以。
这样,SPSS就可以计算马氏距离(Mahalanobis)。
计算出的马氏距离以MAH_1的变量名(变量标签是Mahalanobis Distance)保存在电脑的数据文件的最后一列中。
欧氏距离判别法,马氏距离判别法和Fisher判别法的优缺点有哪些
综述如下:
1、欧氏距离(Euclidean distance)也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m维空间中两个点之间的真实距离。在二维和三维空间中的欧氏距离的就是两点之间的距离。
缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。(每个坐标对欧氏距离的贡献是同等的。当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。
当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。它将样品的不同属性(即各指标或各变量)之间的差别等同看待,这一点有时不能满足实际要求。没有考虑到总体变异对距离远近的影响。
2、马氏距离是由印度统计学家马哈拉诺比斯提出的,表示数据的协方差距离。为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。
它是一种有效的计算两个未知样本集的相似度的方法。对于一个均值为μ,协方差矩阵为Σ的多变量向量,样本与总体的马氏距离为(dm)^2=(x-μ)'Σ^(-1)(x-μ)。在绝大多数情况下,马氏距离是可以顺利计算的,但是马氏距离的计算是不稳定的,不稳定的来源是协方差矩阵,这也是马氏距离与欧式距离的最大差异之处。
优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。(它考虑到各种特性之间的联系(例如:一条关于身高的信息会带来一条关于体重的信息,因为两者是有关联的)并且是尺度无关的(scale-invariant),即独立于测量尺度);由标准化数据和中心化数据(即原始数据与均值之差)计算出的二点之间的马氏距离相同。马氏距离还可以排除变量之间的相关性的干扰。
缺点:夸大了变化微小的变量的作用。受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。
马氏与欧式距离的比较:
1、马氏距离的计算是建立在总体样本的基础上的,这一点可以从上述协方差矩阵的解释中可以得出,也就是说,如果拿同样的两个样本,放入两个不同的总体中,最后计算得出的两个样本间的马氏距离通常是不相同的,除非这两个总体的协方差矩阵碰巧相同;
2、在计算马氏距离过程中,要求总体样本数大于样本的维数,否则得到的总体样本协方差矩阵逆矩阵不存在,这种情况下,用欧氏距离计算即可。
特别声明
本文仅代表作者观点,不代表本站立场,本站仅提供信息存储服务。